Конструкция водяного двигателя

Двигатель на воде: мифы и реальность.

Начнем со сложного- с подачи воды в двигатель. На сайте есть много людей, которые уж очень рекламируют данную тему. По сути, большинство их доводов- чистой воды демагогия или просто выдача желаемого за действительность. Мне эта тема не давала покоя, и я решил сам все поверить, собственно, так и написал эту статтю.

В интернете существует много различных мифов, как повысить мощность двигателя, сократив при этом расход топлива. Это и различные «экотопы», и магниты на бензопроводе, и всякие гомогенизаторы, завыхрители и т.д. В 95% все эти «гениальные» изобретения, которые обещают повысить мощность на 20%, снизить расход на 30% чистой воды шарлатанство, которое в лучшем случае не сделает ситуацию хуже.
Среди всех этих сомнительных улучшений есть системы впрыска воды, причем, как и от СНГ производителя («Водокар»), который приводит вполне серьезные, хоть и антинаучные аргументы (термолиз воды в цилиндре ДВС), так и от серьезных тюнинговых компаний (AEM)
Мало кто понимает сущность подобных систем и результат ее действия. Но тем не менее много кто берется высказать свое мнение, часто ошибочное. В целом все мнения делятся на отрицательные и положительные. Попробуем разобраться, обоснованы ли они.

Начнем с отрицательных:

1 впрыск воды в работающий двигатель обязательно приведет к гидроудару.
Гидроудар происходит когда в цилиндр попадает жидкость (в нашем случае вода) в количестве которое с избытком заполняет объем камеры сгорания когда поршень находится в верхней мертвой точке. Допустим, при движении у верхнюю мертвую точку в конце 2 такта, когда впускные и выпускные клапаны закрыты, поршень встречает встречает воду в избыточном количестве. Согласно законам физики, жидкости (в нашем случае вода) не сжимаются, и вода для поршня стает непреодолимой преградой, и шатун, вращаемый довольно инерционным (в связке с маховиком) коленвалом, гнется или ломается, обычно пробивая при этом блок цилиндров, и мы видим при этом так называемую «руку дружбы.»

Определим критичное количество воды при котором наступает гидроудар на примере двигателя ваз 2103.
Итак, объем камеры сгорания в головке блока цилиндров составляет 39,5 см3 (ГБЦ + прокладка), округлим это число к 40 для удобства расчетов и примем его за объем камеры сгорания при поршне у ВМТ. Для упрощения недоход поршня не будем брать во внимание.
Возьмем наиболее уязвимые для гидроудара обороты— обороты холостого хода—приблизительно 900 об./мин. При данных оборотах двигатель совершает 225 рабочих тактов. В секунду, соответственно, эта величина будет равна 3, 75. Т.е. для гидроудара в двигатель должно попасть 3,75 х 40 = 150 см3 = 150мл/с или 150 х 60 = 9000 мл/мин = 9л/мин Это, согласитесь, довольно много, учитывая расход бензина 1 л/ч = 16,7 мл/мин на холостом ходу. А ведь при таком соотношении бензина/воды 1/5400 двигатель работать не будет в любом случае. Гидроудар наступит разве что если вплеснуть эти 150 мл у впускной коллектор .

2 Впрыск воды приведет к ржавлению цилиндров.
Впрыск воды серийно использовался на немецких истребителях Messerschmitt (система MW 50), также были проведены полномасштабные испытания на авиадвигателе АШ 62. Следов ржавчины не было обнаружено.

3. Вода будет разжижать масло в картере.
Вода в цилиндре перебывает исключительно в газообразном состоянии, а соответственно, разжижает масло не больше чем бензин в топливной смеси.

А теперь положительные:

1. В цилиндре вода под действием высокой температуры разлагается на кислород и водород, которые явно способствуют горению, повышая КПД двигателя и увеличивая его экономичность.

На самом деле температура в камере сгорания в момент рабочего такта (приблизительно от 1000 С до 1800 С) значительно ниже таковой, необходимой для термолиза воды (2500 С)

2. Вода способствует охлаждению ГБЦ и цилиндра

Вполне логичное предположение, подтвержденное испытаниями как и в США так и в СССР

3. избавление от нагара на стенках камеры сгорания

Вода весьма эффективно чистит нагар. Подтверждено испытаниями.

4. вода является эффективным антидетонатором

Вода, охлаждая топливную смесь и камеру сгорания, а также являясь инертной средой в цилиндре очень успешно подавляет детонацию, делая возможным работу двигателя на низкооктановых топливах, высоком давлении наддува, сильно обедненных смесях.

А теперь кратко о испытаниях и серийных системах. Испытаниями занимались как и в США так и в СССР. На основание испытаний были сделаны следующие выводы:

1. Впрыск воды снижает температуру ГБЦ и поршня.
2. Впрыск воды эффективно подавляет детонацию, а, соответственно, позволяет:
А) применять в эксплуатации низкооктановый бензин.
Б) увеличивать давление наддува, повышая при этом мощность а также КПД двигателя, снижая при этом удельный расход топлива.
3. Уменьшение вредных выбросов в атмосферу
А) за счет более эффективного сгорания топлива.
Б) в случае работы двигателе на бензине с более низким октановым числом, в котором
Отсутствуют антидетонаторы на основе вредных веществ типа тетраэтилсвинца.

Наиболее известной системой впрыска воды, устанавливаемой серийно была MW 50, устанавливаемая на двигатели Daimler Benz 601 истребителя Messerschmitt bf-109.
Система состояла из бака, наполненного на 50% водой и 50% метанолом, который был необходим, чтобы избежать замерзания воды на больших высотах (в экстренных случаях допускалось использование чистой воды). Вода из бака подавалась в механический нагнетатель, охлаждая горючую смесь, отодвигая при этом зону детонации. При этом давление наддува повышалось с 1,3 ATA до 1,7 ATA. Мощность при этом возрастала 1575 л.с. до 1800 л.с. При этом также значительно повышался расход топлива. Всего за 1 полет MW 50 можно было включать 2 раза по 10 минут.
В США эксплуатировали похожую систему: впрыск воды позволял избежать детонации в режимах больших нагрузок. При этом обеднялась горючая смесь и оптимизировался процесс сгорания в цилиндрах (более полное, а значит и более эффективное сгорание топлива)
В СССР подобные системы серийно не эксплуатировались, но были проведены полномасштабные стендовые и летные испытания, которые подтвердили эффективность впрыска воды.
На автомобилях впрыск воды не прижился: он использовался лишь на некоторых моделях Chrysler и SAAB

Подробно изучив информацию по данной теме, было принято решение изготовить систему впрыска воды из подручных средств и испытать ее на двигателе ваз 2103.
Для этого был доработан штатный карбюратор ДААЗ 2107. Доработки заключались в следующем:
1 Был просверлен эмульсионный канал к 1 камере (аналогично эмульсионному каналу эконостата 2 камеры). Для сверления рекомендую использовать сверлильный станок. В начало просверленного канала была вставлена трубка .
2 На месте отсутствующего воздушного жиклера (по аналогии с эконостатом 2 камеры)
Была вставлена трубка, которая через просверленное в крышке карбюратора отверстие выведена наружу.
3 В корпусе карбюратора в месте состыковки малого диффузора и корпуса было просверлено отверстие до эмульсионного канала (аналогично эконостату 2 камеры).
4 Был применен малый диффузор с маркировкой 4 с каналом эконостата.
5 В отверстие эмульсионного канала вставляется отсутствующий эмульсионный жиклер, отверстие топливного канала (рядом) заглушается.
6 трубка 1 (пункт 2) через электромагнитный клапан подключена через жиклер к бачку, служащему поплавковой камерой, закрепленному таким образом, чтобы уровень воды был несколько выше уровня топлива в поплавковой камере карбюратора, но так, чтобы вода не капала с малого диффузора при открытом клапане на заглушенном двигателе. Поплавковой камерой служит бачок для тормозной жидкости, используемый в приводе сцепления.
7. «Поплавковой» данную камеру можно назвать лишь с натяжкой, так как поплавок отсутствует. Его роль выполняют 3 контакта погружены в воду, с помощью которых схема, основанная на NAND логике, управляет помпой, расположенной в 3-х литровом бачке (бачок омывателя и насос из Газели ).(Работа схемы основана на электропроводимости воды).
8. Трубка 2(пункт 1) заканчивается жиклером и воздушным фильтром.
9. В силу конструктивных особенностей система вступает в работу в диапазоне оборотов от 1700 до 2000. Чтобы подача воды осуществлялась более точно, ее включение происходит автоматически с помощью блока управления ЭПХХ при 1900 об/мин.
Блок ЭПХХ был немного доработан: в схему добавлен инвертор, чтобы при достижении заданных оборотов включения, на выходе был логический 1(+), а при отключении логический 0.
10 При оборотах ниже порога включения системы, а также при выключенном зажигании электромагнитный клапан закрыт, питание на механизм регулировки уровня воды в поплавковой камере не поступает.

Конструкция водяного двигателя

Некоторые узлы испытал. Горючая смесь из воды очень взрывоопасна! (бензин отдыхает) Перспективы есть, но необходимо ещё работать и работать!

Двигатель АР- 1 , работающий на воде .

Принцип работы следующий. В цилиндр помещаем воду, в количестве 1:10 от его объёма, выт е сняем воздух и закрываем клапан, который находится вверху. При прокручивании коленчатого вала по часовой стрелке, поршень начинает двигаться вниз. Вода при этом растягивается.

(Кстати, при растягивании воды из неё высвобождается водород, который тоже можно как то использовать. Но это к теме не относится)

Растянув воду на треть объёма цилиндра открывается клапан, через который во внутрь цилиндра устремляется воздух, и в это время происходит мощнейший гидравлический удар . Это и есть движущая сила. Под действием удара поршень крутит коленвал, на котором находится несколько таких поршней. Часть энергии примерно 25 % уходит на то, что бы растянуть воду в тех цилиндрах, поршни которых находятся в критической верхней точке, а часть, примерно 5 % на то, что бы поднять поршни из нижней критической точки в исходное положение. Оставшиеся 75 % — это чистый КПД.

Цилиндров должно быть не меньше шести, (для простоты восприятия я изобразил только один).

Поршень, достигнув критической нижней точки снова поднимается вверх, частично по инерции раскрученного коленвала (на котором находится маховик) но больше из-за того, что следующий, спаренный одним коленвалом поршень, в это время получает гидравлический удар

Пройдя полный цикл и возвратившись в исходное положение, клапан закрывается. Цикл повторяется. И так бесконечно. Необходимо только снабдить этот двигатель автоматической системой долива воды, в том случае, если она будет испарятся от нагрева цилиндров, или разбрызгиваться через клапан.

Единственным недостатком такого двигателя — это большие размеры коленвала, поскольку ход поршня очень велик. По этой же причине я применил безшатунный поршень, так как удлинённые стенки цилиндра не позволили бы шатуну сделать полный ход. Само собой разумеется, что чем длиннее цилиндр, тем больше диаметр коленвала, но зато и гидравлический удар сильнее прямо пропорционально. От этого будет зависеть мощь двигателя.

Как видите, крылатая фраза « Всё гениальное — просто » уже в который раз находит подтверждение.

Интересным оказался ещё тот факт, что если воду растянуть, а потом отпустить поршень, то сила удара становится намного больше, чем сила затраченная на растягивание (принцип лука, или камнеметальной машины) Поэтому возможно соорудить такой же двигатель, только с обратной тягой, без верхнего впускного клапана. Но это уже будет АР- 2

Это теоретическая модель и на практике мной проверялась только частично (игрался с медицинским шприцем, и замерял затраченное усилие на растяжение воды, и полученное усилие от её схлопывания) Кстати, видеоролик моего эксперимента на странице « изобретения » подтверждает тот факт, что полученная энергия в несколько сотен раз превышает затраченную. Перейти на страницу можно ЗДЕСЬ

Принципиальная схема автомобильного агрегата синтина, для работы двигателя на воде.

Из обычной водопроводной воды, за один час времени, в электродуговом реакторе Ж.Л. Надина, выделяется:

85 л — окиси углерода

15 л — остальные газы: кислород, азот, метан, ацетилен, этан, этилен, углекислый газ.

Так вот . Понятно, что эта смесь горит, но КПД, которое можно выжать из этого горения, не больше 25 %, поскольку смесь этих газов не очень горючая. Углекислый газ вообще тормозит горение. К тому же, окись углерода (СОН 2) — очень ядовита, и погубила десятки тысяч человеческих жизней.

Но выход есть! Вот он. ( смотри Рис. 1 )

2. Электродуговой реактор

3. Подвижные электроды

5. Вихревая труба

6. Синтезатор жидких углеводородов

7. Бак для ситина

8. Камера сгорания автомобиля

И так. Вода из бака ( 1) свободно поступает в электродуговой реактор ( 2) . Электроды ( 3) крепятся на подвижных резиновых мехах, которые, по мере уменьшения, непрерывно сближаются на необходимый зазор, с помощью шагового механизма. (Шаговый механизм можно взять, например от струйного принтера, а сенсоры подойдут от старой компьютерной шариковой мышки).

Выделяющиеся из воды газы поступают по трубке ( 4) в вихревую трубу ( 5) , снабжённую небольшим электродвигателем, где разделяются на лёгкие и тяжёлые. То есть, на лёгкий водород и на тяжёлые газы: окись углерода, и остальные перечисленные.

Читайте также  Водяная станция работает но не качает воду

Водород, без дальнейших изменений, поступает через систему подачи топлива в камеру сгорания двигателя автомобиля, а окись углерода поступает в устройство синтеза синтетического бензина синтина ( 6) .

При разделении газов в вихревой трубе, разделение будет не чистое, и часть водорода будет присутствовать в окиси углерода. А поскольку для синтеза синтина требуются оба этих газа, то процентное соотношение водорода и окиси углерода можно регулировать скоростью вращения электродвигателя вихревой трубы: чем больше скорость вращение вихря, тем чистее будет разделение газов, и наоборот.

Синтин свободно поступает в бак ( 7) и дальше, бензонасосом, подаётся через систему подачи топлива, в камеру сгорания двигателя автомобиля.

Таким образом КПД повысится до 90 — 95%

Все узлы агрегата простые для изготовления, и каждый может изготовить его самостоятельно у себя в гараже.

Состав выхлопных газов — водяной пар, углекислый газ, и. Точно неизвестно, поскольку агрегат теоретический, и на практике не применялся. Поэтому автор ( то есть, я) за здоровье практикующих, а также за экологический вред, нанесённый окружающей среде, ответственности не несу!

В случае, если выхлопные газы окажутся углеродосодержащими, их можно повторно направлять в синтезатор, или в дополнительный электродуговой реактор, для получение новых элементов из плазмы.

А для тех , кто не любит подобные заморочки, рекомендую направлять весь газ из реактора в синтезатор жидких углеродов прямо в гараже. За ночь будет накапливаться до 20 л синтетического бензина. Затраты минимальные, а экономия существенная: реактор работает от трансформатора 34-36v , и потребляет 40w электроэнергии.

На рис. 2 изображена принципиальная схема стационарного (гаражного) агрегата. Поршень служит для первоначального сужения и регулировки электродов, необходимое для начала термоядерной реакции. Капельница должна доливать ровно столько воды, сколько синтина вытекает, для соблюдения нормального расстояния между электродами. Плюсовой электрод просто ставится на контакт, как в китайских электрочайниках. Дистиллятор охлаждается водой (проточной или замкнутой системой). Катализатор греется теном от электроплитки, с терморегулятором. Температура внутри катализатора не должна превышать 190 градусов.

Предлагаю к рассмотрению автономный агрегат получения топлива из воды.

Все узлы агрегата изобретены до меня, а я лишь соединил их в одно целое. Сам не испытывал!

В процессе эксперимента я обнаружил, что для получения одного литра газа в дуговом реакторе, израсходуется ничтожно малое количество воды .

Я взвешивал воду до, и после извлечения, на кухонных весах, и её вес был одинаковый, поскольку точность моих весов— 1 гр. То есть, на один литр газа идёт несколько десятых грамма воды.

Реактор у меня маленький, его объём всего 150 мл. Однажды, после прекращения реакции, я выключил реактор, отсоединил выходную трубку, но газ продолжал выходить (оставалось его там несколько мс/куб). Он выходил медленно, и я, чтобы не ждать, решил его сжечь. Поднёс спичку, и БАБАХ! Взрывом вырвало крышку реактора. Представляете, какой врыв будет, если поджечь целый литр .

Так вот. Предлагаю новую модель агрегата, который годится для обычного двигателя внутреннего сгорания.

Камера должна быть очень миниатюрная. На одну каплю воды.

Одна капля воды капает (или нагнетается дозатором) в камеру, которая выступает катодом. Заслонка входа закрывается, цепь замыкается контактами, и эту каплю воды пронизывает электрическая дуга, которая возникае т между катодом и анодом, и мгновенно превращает её в газ, который увеличивается в объёме до одного литра, и свободно поступает в камеру сгорания автомобиля как раз в тот момент, когда поршень движется вверх. Дальше обычный процесс: поршень этот газ сжимает, свеча зажигания зажигает. На выхлоп идёт водяной пар и углекислый газ. Всё!

Ещё не пробовал, но должно работать!

Кстати, работающие модели двигателей на воде смотри на вкладке « эксперименты » Или перейди ЗДЕСЬ

И ещё одна, очень перспективная модель . Теоретическая!

Очень интересную подборку по изготовлению действующих генераторов синтина в домашних условиях, и получение горючих газов из воды

а так же видео материалы некоторых устройств, можно скачать здесь:

Принципиальная модель демонстрирующая работу двигателя на воде. Вода при этом не израсходуется, а лишь её внутренняя энергия.

Ещё некоторые работающие модели двигателей на воде ЗДЕСЬ

Для комментариев перейдите на страницу:

Универсальный топливный реактор для автомобиля, или для дома.

В диэлектрическую ёмкость с водой ( 5) засыпать угольный порошок ( 6) , или угольную пыль, но можно и графитовую. В принципе, любой мелко измельчённый углерод подойдёт! Пропорции здесь не важны, лишь бы электроды ( 3-4) полностью погрузились в порошок, который осядет на дно ёмкости.

Герметично закрыть ёмкость крышкой ( 1) в которой есть выходная трубка для синтез газа, с фильтром ( 2).

На электроды подать питание. Источником питания может быть автомобильный сварочный аппарат на 12 вольт, или другой инвертор, преобразующий питание автомобиля в более мощный ток. Я экспериментировал на кухне, поэтому подавал напрямую из розетки 220 вольт.

Этот сосуд поместить во внутрь другого сосуда с охлаждающей проточной водой, и всё это поместить во внутрь катушки медного провода. Вот и всё!

1) Выходящий горючий газ, который можно сжигать в камере сгорания автомобиля, в газовой плите (горелке котла) и т.д. Подавать через водяной затвор.

2) Горячую воду, которую можно закольцевать в систему отопления дома. КПД нагрева воды— 150 % относительно заводского ТЭН нагревателя воды.

3) Электричество для освещения, или для самозапитки этого же реактора, который будет питать сам себя. Дуга внутри реактора генерирует очень мощное электромагнитное излучение, которое вызывает индукцию в катушке. Количество витков и диаметр провода надо подбирать экспериментально для наибольшего КПД.

Осторожно, синтез газ очень взрывоопасный! Все соединения должны быть герметичными!

Оба провода должны быть хорошо изолированы во избежание пробоя через воду. Электроды должны быть сделаны из нержавейки, диаметр 3 мм. Расстояние между электродами 15-30 мм. (зависит от состава и минерализации воды).

После включения зажигания, между электродами, через мокрую угольную пыль, проскакивает искра, которая ионизирует пространство, после чего между электродами возникает плазменная дуга. Вода с угольным порошком начинает бурлить, и в области плазмы бурно выделять синтез газ (соединение углерода, водорода и кислорода). Реактор при этом очень быстро и сильно греется. Примерно 1 литр воды — за 10 сек доходит до кипения. Внутри плазмы — 5000 С. Поэтому надо охлаждать и отводить горячую воду. А в катушке возникает индукция от сильного электромагнитного колебания, которое излучает дуга.

На малолитражных двигателях можно ездить вообще без бензина. Расход угля ( предварительный) 0,5 кг — на 100 км. Это примерно — 3 цента. (электропитание автомобиля ещё не отрабатывал)

1) Пары углерода, испаряясь из области плазменной дуги, могут при охлаждении осаждаться и кристаллизироваться в кристаллы алмазов. Даже небольшие алмазы, попадая в камеру сгорания автомобиля, будут выводить из строя поршни и царапать поверхность цилиндров. Большая вероятность того, что алмазы могут синтезироваться непосредственно в камере сгорания, поскольку кристаллизация алмазов происходит именно при охлаждении паров углерода до температуры 1500 — 2000 градусов, которая вполне может достигать этого значения внутри камеры сгорания. ( смотри « технология получения алмазов в домашних условиях » на закладке « СЕНСАЦИИ »

2) Кроме электромагнитного излучения, реактор излучает почти весь спектр жёских лучей, (так же, как солнце), от ультрафиолетовых до рентгеновских. Поэтому желательно экранировать реактор свинцовым кожухом

На фото — лабораторный, примитивный, плазменный, топливный реактор для ДВС.

На видео, которое доступно ниже, хорошо видно огромный выход горючего газа. За 10 секунд вся комната была заполнена газом, а сам реактор нагрелся за это же время до 100 С. Расход электричества при этом — всего пару оборотов счётчика. Меньше чем утюг.

Поэтому эта технология актуальна не только для автомобиля, но и для дома, поскольку газ можно сжигать в топке, или в газовой плите, а вода, которая будет охлаждать реактор — её пустить по системе отопления, и в доме будет жарко. Предварительный расчёт сумарного КПД ( тепло электричество и газ) более 200 %

И это при том, что устойчивой плазмы я не смог добиться. Позже выложу видео промышленного образца со стабильной плазмой, а пока смотрите то, что есть:

Видео экспериментов, схемы, описание, одним файлом , — СКАЧАТЬ ЗДЕСЬ

Видео и фото устойчивой плазмы в воде, смотреть ЗДЕСЬ

Как работает машина на воде(правда или ложь).

Когда вы встречаете кричащие заголовки о том, что очередной изобретатель изобрел машину, которая ездит на воде, вы конечно удивляетесь. Ну как вода может быть топливом? Вообще-то никак не может, но журналисты как всегда хитрят, чтобы привлечь внимание.
На самом деле все проекты двигателей на воде, к воде имеют отдаленное отношение. Конечно, вода, это соединение водорода и кислорода. И да, водород может быть топливом. Но чтобы разорвать межатомные связи и добыть из воды водород нужно затратить кучу энергии, такой электролиз происходит еще и с выделением тепла. А второе начало термодинамики гласит, что нельзя передать тепло от более холодного к более горячему. В общем, такая схема более чем неэффективна.

Так что же скрывается за водяными автомобилями? Дело в том, что в качестве топлива используется не вода, а водяные растворы солей. Если немного упростить, то двигатель работает на соленой воде. Что такое соленая вода? Это электролит, как в обычных батарейках. А из электролита извлечь энергию проще, чем из воды.

Фактически двигатель на соленой воде, еще используется название «потоковая батарея», работает по тому же принципу, что и топленный элемент использующий водород (есть еще топливные элементы использующие метанол, щелочи или кислоты).

Упрощенная модель выглядит так. Соляной раствор протекает через мембрану, где раствор вступает в реакцию окисления, производя отрицательно заряженные электроны и положительно заряженные, создавая при этом электрический ток. То есть имеем батарейку в которой соляной раствор не замкнут внутри оболочки и таким образом, залить в бак такого топлива можно столько, сколько позволит сам бак. Как и в случае с другими типами топливных элементов, в этом используется два типа жидкости, то есть заправлять придется 2 отдельных бака.

Один раствор нужен для реакции окисления, другой, для реакции восстановления. Таким образом, вся система представляет собой скорее аккумулятор, так как может быть перезаряжена, ну на худой конец жидкость в баки можно залить совсем новую.

Самое интересное, что история топливных элементов сама по себе не нова и. Принцип был открыт еще в 19-м веке, а первые работающие топливные элементы появились в 50-60-х годах двадцатого. Многие из них даже использовались для питания оборудования на космических аппаратах.

КПД топливных элементов и двигателей на их основе выше, чем у двигателей внутреннего сгорания, ведь превращение химической энергии в электрическую идет без сгорания топлива, а движущихся частей (на трение в которых расходуется энергия) в такой системе очень мало.

В отличие от водородных топливных элементов, вариант машины использующей растворы солей выглядит более перспективным, так как химическая промышленность и инфраструктура более готова к производству соляных растворов, чем к производству водорода.

Когда же мы машины начнут ездит на соленой воде, спросите вы? Они уже ездят. Компания nanoFlowcell из Лихтенштейна утверждает что уже сертифицировала свои автомобили Quant e-Sportlimousine, Quantino и Quant F для стран Евросоюза.
Динамика у e-Sportlimousine впечатляющая (для тех, кто привык к бензиновым двигателям), за 2,8 секунды электромобиль способен разогнаться до 100 при максимальной скорости — 350 км/ч, а ее двигатель способен развивать мощность 680 киловатт (что соответствует 920 л.с.) и крутящий момент 2900 Нм. При этом запас хода обещают в 600 километров на одной зарядке.

Quantino, модель предназначенная для «простых смертных» имеет более скромные характеристики — 143 лошадиные силы, но запас хода увеличен до 1000 км. Скорее всего именно скромный Quantino станет первым серийным «автомобилем на воде». О том, когда такие машины появятся на рынке, пока достоверной информации нет. Но видимо ждать осталось не долго.
Но если вы вообще не намерены ждать, то в интернете вы можете купить машинку игрушку которая ездит на растворе обычной столовой соли всего за пару долларов. Так сказать для «знакомства с технологией».

Водометы для лодок своими руками: рекомендации по изготовлению на базе лодочного мотора и центробежного насоса

Создание скоростного и экономичного водометного двигателя – весьма серьезная задача, требующая хорошей исследовательской и производственной базы.

Читайте также  Крепление водяных полотенцесушителей к стене

Но примитивный вариант такого устройства вполне можно сделать самостоятельно.

Давайте посмотрим, как делают водометы для лодок своими руками, и какие особенности характерны для таких двигателей.

Конструкция водометного двигателя

Главными элементами такого механизма, как и в классическом варианте, являются двигатель внутреннего сгорания и винт, только последний расположен внутри длинной трубы, проложенной вдоль корпуса лодки. Разумеется, «труба» — это слишком упрощенный термин. Правильное название этой части двигателя – водовод, а состоит он из следующих узлов:

  • водозаборник: передняя часть, по которой вода поступает к винту;
  • спрямляющий аппарат: благодаря этому элементу вращательное движение закрученного винтом водного потока трансформируется в прямолинейное;
  • сопловой аппарат: завершающая часть «трубы», из которой вода выбрасывается наружу.

Еще один важный элемент водомета – реверсивно-рулевое устройство, благодаря которому лодка может менять направление движения, а также давать задний ход.

Схема конструкции водометного двигателя

Винты (их также называют рабочими колесами или импеллерами) бывают нескольких видов:

  • Осевые: наиболее просты в изготовлении, но обеспечивают самый низкий КПД и ввиду ярко выраженного эффекта кавитации могут работать только на низких оборотах.
  • Осе-диагональные: имеют более высокий КПД и рассчитаны на среднеоборотистые двигатели;
  • Диагональные и шнековые: наиболее современные и чрезвычайно сложные в изготовлении разновидности, характеризуются самым высоким КПД и способны работать с высокооборотистыми двигателями.

Среди всех составляющих водомета винты находятся на первом месте по сложности изготовления. Для этого применяется метод точного литья с последующей шлифовкой.

Не стоит приобретать водомет с импеллером, лопасти которого приварены к ступице, а не составляют с ней единое целое: такие винты зачастую имеют дисбаланс, что приводит к их разрушению при повышенных оборотах.

Преимущества и недостатки

За счет установки водометного двигателя владелец плавсредства выигрывает в следующем:

  1. Поскольку спрятанному в водоводе винту наматывание водорослей не грозит, лодка приобретает способность легко перемещаться по заросшим водоемам.
  2. Удары винта о дно также исключены, что дает возможность беспрепятственно плавать в местах с небольшой глубиной или с отмелями.
  3. Лодка с водометом становится безопасной для купальщиков, водолазов и обитающей в водоемах фауны.
  4. В отличие от обычных гребных винтов, рабочие колеса водометов, особенно современные, защищены от негативного воздействия кавитации.

Но придется примириться и с некоторыми недостатками:

  1. При той же мощности двигателя лодка будет двигаться медленнее, чем с обычным винтом.
  2. Ухудшается управляемость.

Кроме того, лодка становится тяжелее из-за веса воды, заполняющей водомет.

Для того чтобы поменять трубы в квартире, необязательно вызывать бригаду мастеров. Замена труб в квартире своими руками существенно сэкономит средства несмотря на всю сложность данного предприятия.

Как правильно соединить унитаз с канализационной трубой, смотрите тут. Обзор основных вариантов.

Слабый напор воды в квартире — не такая уж редкость. Если водоканал не может исправить ситуацию, воспользуйтесь нашими советами: http://aquacomm.ru/cancliz/mnogokvartirnyie-doma/santehnika/kak-uvelichit-napor-vody-v-kvartire.html. Способы увеличения давления воды — от замены труб до установки насосной станции.

Принцип работы

Выбрасывая с большой скоростью воду, водомет создает реактивную тягу, которая и приводит лодку в движение. Рассмотрим данный процесс более детально:

  1. Вода поступает в расположенный в передней части лодки водозаборник. Он снабжен сеткой, которая отфильтровывает водоросли и плавающий в воде мусор. Конструируя водозаборник, инженеры стремятся обеспечить ламинарное течение воды в нем, так как наличие турбулентности на подходе к винту значительно ухудшает характеристики двигателя.
  2. Винт с силой отбрасывает воду назад, при этом она попадает в сужение, благодаря чему ее скорость возрастает.
  3. Спрямляющий аппарат, как уже говорилось, увеличивает скорость потока за счет преобразования его вращательного движения в поступательное. Его лопаткам стараются придать такую форму, которая обеспечивала бы наименьшее сопротивление движущейся жидкости. Производители применяют различные конструкции спрямляющих аппаратов. Одна из них – лопаточное поджатие – позволяет использовать данный элемент одновременно в качестве соплового аппарата.
  4. Далее поток попадает в сопло (если эту функцию не выполняет спрямляющий аппарат). Благодаря небольшому проходному сечению, давление воды здесь преобразуется в скорость – этот эффект и называется поджатием.

Схема работы водомета

Водомет своими руками

Рассмотрим, как сделать водомет для лодки своими руками. Хитрые на выдумку умельцы придумали два варианта самодельных водометов.

На базе лодочного мотора

Как показал опыт, наиболее удачные самодельные водометы получаются из лодочного мотора «Ветерок-12». Но можно использовать и любой другой. Обычно применяют старые модели: «Москва», «СМ-557-9Л», «Стрела» и т.п. Главное преимущество «Ветерка» — в распространенности и доступности необходимых деталей.

Водовод можно размещать как снаружи лодки, так и внутри нее. Второй вариант применяется чаще, так как при наружном расположении увеличивается гидродинамическое сопротивление плавсредства. Некоторые элементы водовода изготавливают из труб, другие – сваривают из заготовок, вырезанных из листа нержавеющей стали.

Водомет на «Ветерке»

Придать заготовкам нужную форму можно с помощью оправки (вручную) либо гибочных вальцов. Лопасти рабочего колеса вырезаются из того же материала. Затем их подвергают профилировке и и приваривают к ступице.

На этапе проектирования модель водовода можно сделать из папье-маше. Затем ее достаточно будет разрезать, чтобы получить выкройку для заготовки-развертки.

Передача вращения от двигателя осуществляется посредством обычного штатного редуктора. Он крепится к главному дейдвуду мотора при помощи специального фланца.

Водоизмещение этой версии самодельного водомета составляет 450 кг. Благодаря ему судно может развивать скорость до 20 – 25 км/ч и выполнять глиссирование.

На базе центробежного насоса

Предлагается использовать насос Pacer Pumps 200GPM с пластиковым корпусом (термостойкий полистирол), имеющий вес около 18 кг.

Нагнетательный механизм этого аппарата приводится в движение двигателем Intek мощностью в 5 л.с. производства Briggs & Stratton.

Насос развивает напор в 35 м и имеет 2-дюймовые патрубки всаса и нагнетания. Его стоимость составляет около 300 долларов.

Насос устанавливается в лодке, после чего к нему со стороны всаса присоединяется 2-дюймовая ПВХ-труба. Через отверстие в носовой части днища лодки ее нужно вывести в воду, снабдив патрубком с сетчатым фильтром – это будет водозаборник.

На резьбу нагнетательного патрубка навинчивается высоконапорный штуцер с выходным отверстием диаметром 24 мм. Подойдет изготовленный из упрочненного винила – такие сегодня продаются в любом магазине для садоводов и огородников. Роль сопла также будет возложена на отрезок ПВХ-трубы, имеющей тот же, что и у штуцера, диаметр. Для подсоединения штуцера к соплу следует использовать резиновый шланг.

Не стоит опускать сопло в воду. Вопреки распространенному мнению, такой прием не ускорит, а замедлит лодку, так как приведет к возникновению кавитации.

Величина реактивной тяги, развиваемой таким водометом, зависит от суммарной длины всасывающей и нагнетательной магистралей.

Поскольку гидравлическое сопротивление возрастает с уменьшением диаметра трубы и увеличением скорости движения жидкости в ней, выгоднее всего установить насос как можно ближе к корме, чтобы длина сопла оказалась минимальной.

При таких условиях насос при максимальных оборотах двигателя развивал напор примерно в 20 метров водного столба (2 атм), благодаря чему лодка набрала скорость до 8 км/ч.

Испытателя подобного водомета может подстерегать неприятность: напорный штуцер довольно легко откручивается потоком воды, причем сила его воздействия настолько велика, что удержать деталь от вращения вручную нет никакой возможности.

Смазывание патрубка клеем перед навинчиванием штуцера желаемого эффекта не дает – штуцер все равно срывает. Рекомендуется разработать для резьбового штуцера дополнительное крепление либо использовать насос и штуцер с фланцами.

При монтаже систем водоснабжения часто необходимо соединять между собой разные виды труб. Соединение металлопластиковых труб с металлическими и полимерными при помощи фитингов — этой теме посвящена следующая статья.

Практические советы по установке поддона для душа смотрите на этой странице.

Видео на тему

Как работает водородный двигатель и какие у него перспективы

С 2018 года в ЕС действует запрет на дизельные автомобили новейшего поколения в населенных пунктах [1]. Это стало поворотным моментом в развитии рынка электрокаров, а также — гибридных и водородных двигателей.

Великобритания еще в 2017-м высказывалась за полный запрет бензиновых авто к 2040 году. Тогда же, если верить исследованию Bloomberg New Energy Finance [2], на электрокары будет приходиться 35% от всех продаж автомобилей. Уже к 2030 году Jaguar и Land Rover планируют довести число электрокаров в своих линейках до 100% [3]. Часть из них тоже работает на водороде.

История развития рынка водородных двигателей

Первый двигатель, работающий на водороде, придумал в 1806 году французский изобретатель Франсуа Исаак де Риваз [4]. Он получал водород при помощи электролиза воды.

Первый патент на водородный двигатель выдали в Великобритании в 1841 году [5]. В 1852 году в Германии построили двигатель внутреннего сгорания (ДВС), который работал на воздушно-водородной смеси. Еще через 11 лет французский изобретатель Этьен Ленуар сконструировал гиппомобиль [6], первые версии которого работали на водороде.

В 1933 году норвежская нефтегазовая и металлургическая компания Norsk Hydro Power переоборудовала [7] один из своих небольших грузовиков для работы на водороде. Химический элемент выделялся за счет риформинга аммиака и поступал в ДВС.

В Ленинграде в период блокады на воздушно-водородной смеси работали около 600 аэростатов. Такое решение предложил военный техник Борис Шепелиц, чтобы решить проблему нехватки бензина. Он же переоборудовал 200 грузовиков ГАЗ-АА для работы на водороде.

Первый транспорт на водороде выпустила в 1959 году американская компания Allis-Chalmers Manufacturing Company — это был трактор [8].

Первым автомобилем на водородных топливных элементах стал Electrovan от General Motors 1966 года. Он был оборудован резервуарами для хранения водорода и мог проехать до 193 км на одном заряде. Однако это был единичный демонстрационный экземпляр, который передвигался только по территории завода.

В 1979-м появился первый автомобиль BMW с водородным двигателем. Толчком к его созданию послужили нефтяные кризисы 1970-х, и по их окончании об идее альтернативных двигателей забыли вплоть до 2000-х годов.

В 2007 году та же BMW выпустила ограниченную серию автомобилей Hydrogen 7, которые могли работать как на бензине, так и на водороде. Но машина была недешевой, при этом 8-килограммового баллона с газом хватало всего на 200-250 км.

Первой серийной моделью автомобиля с водородным двигателем стала Toyota Mirai, выпущенная в 2014 году. Сегодня такие модели есть в линейках многих крупных автопроизводителей: Honda, Hyundai, Audi, BMW, Ford и других.

Как работает водородный двигатель?

На специальных заправках топливный бак заправляют сжатым водородом. Он поступает в топливный элемент, где есть мембрана, которая разделяет собой камеры с анодом и катодом. В первую поступает водород, а во вторую — кислород из воздухозаборника.

Каждый из электродов мембраны покрывают слоем катализатора (чаще всего — платиной), в результате чего водород начинает терять электроны — отрицательно заряженные частицы. В это время через мембрану к катоду проходят протоны — положительно заряженные частицы. Они соединяются с электронами и на выходе образуют водяной пар и электричество.

По сути, это — тот же электромобиль, только с другим аккумулятором. Емкость водородного аккумулятора в десять раз больше емкости литий-ионного. Баллон с 5 кг водорода заправляется около 3 минут, его хватает до 500 км.

Где применяют водородное топливо?

  • В автомобилях с водородными и гибридными двигателями. Такие уже выпускают Toyota, Honda, Hyundai, Audi, BMW, Ford, Nissan, Daimler;
  • В поездах. Первый такой был выпущен в Германии компанией Alstom и ходит по маршруту Букстехуде — Куксхафен;
  • В автобусах: например, в городских низкопольных автобусах марки MAN.
  • В самолетах. Первый беспилотник на водороде выпустила компания Boeing, внутри — водородный двигатель Ford;
  • На водном транспорте. Siemens выпускает подводные лодки на водороде, а в Исландии планируют перевести на водородное топливо все рыболовецкие суда;
  • Во вспомогательном транспорте. Водород используют в электрокарах для гольфа, складских погрузчиках, сервисных автомобилях логистических компаний и аэропортов;
  • В энергетике. Электростанции мощностью от 1 до 5 кВт, работающие на водороде, могут обеспечивать теплом и энергией небольшие города и отдельные здания. Например, после аварии на Фукусиме в 2018 году Япония активнее начала переходить на водородную энергетику [9], планируя перевести на водород 1,4 млн электрогенераторов;
  • В смесях с обычным топливом. Например, с дизельным или газовым — чтобы удешевить производство.

Плюсы водородного двигателя

  • Экологичность при использовании. Водородный транспорт не выбрасывает в атмосферу диоксид углерода;
  • Высокий КПД. У двигателя внутреннего сгорания (ДВС) он составляет около 35%, а у водородного — от 45%. Водородный автомобиль сможет проехать на 1 кг водорода в 2,5-3 раза больше, чем на эквивалентном ему по энергоемкости и объему галлоне (3,8 л) бензина;
  • Бесшумная работа двигателя;
  • Более быстрая заправка — особенно в сравнении с электрокарами;
  • Сокращение зависимости от углеводородов. Водородным двигателям не нужна нефть, запасы которой не бесконечны и к тому же сосредоточены в нескольких странах. Это позволяет нефтяным государствам диктовать цены на рынке, что невыгодно для развитых экономик.
Читайте также  Как выгнать воздух из теплого водяного пола?

Минусы водородного двигателя

  • Высокая стоимость. Галлон бензина в США стоит около $3,1 [10], а эквивалентный ему 1 кг водорода — $8,6. Водородные батареи содержат платину — один из самых дорогих металлов в мире. Дополнительные меры безопасности также делают двигатель дорогим: в частности, специальные системы хранения и баки из углепластика, чтобы избежать взрыва.
  • Проблемы с инфраструктурой. Для заправки водородом нужны специальные станции, которые стоят дороже, чем обычные.
  • Не самое экологичное производство. До 95% сырья для водородного топлива получают из ископаемых [11]. Кроме того, при создании топлива используют паровой риформинг метана, для которого нужны углеводороды. Так что и здесь возникает зависимость от природных ресурсов.
  • Высокий риск. Для использования в двигателях водород сжимают в 850 раз [12], из-за чего давление газа достигает 700 атмосфер. В сочетании с высокой температурой это повышает риск самовоспламенения.

Водород обладает высокой летучестью, проникает даже в небольшие щели и легко воспламеняется. Если он заполнит собой весь капот и салон автомобиля, малейшая искра вызовет пожар или взрыв. Так, в июне 2019 года утечка водорода привела к взрыву на заправке в Норвегии. Сила ударной волны была сопоставима с землетрясением в радиусе 28 км. После этого случая водородные АЗС в Норвегии запретили

Водород для топлива можно получать разными способами. В зависимости от того, насколько они безвредны, итоговый продукт называют [13] «желтым» или «зеленым». Желтый водород — тот, для которого нужна атомная энергия. Зеленый — тот, для которого используют возобновляемые ресурсы. Именно на этот водород делают ставку международные организации.

Самый безвредный способ — электролиз, то есть, извлечение водорода из воды при помощи электрического тока. Пока что он не такой выгодный, как остальные (например, паровая конверсия метана и природного газа). Но проблему можно решить, если сделать цепочку замкнутой — пускать электричество, которое выделяется в водородных топливных элементах для получения нового водорода.

Водородный транспорт в России

В России в 2014 году появился свой производитель водородных топливных ячеек — AT Energy. Компания специализируется на аккумуляторных системах для дронов, в том числе военных. Именно ее топливные ячейки использовали для беспилотников, которые снимали Олимпиаду-2014 в Сочи.

В 2019 году Россия подписала Парижское соглашение по климату, которое подразумевает постепенный переход стран на экологичные виды топлива.

Чуть позже «Газпром» и «Росатом» подготовили совместную программу развития водородной технологии на десять лет.

Главный фактор, который может обеспечить России преимущество на рынке водорода — это богатые запасы пресной воды [14] за счет внутренних водоемов, тающих ледников Арктики и снегов Сибири. Вблизи последних уже есть добывающая инфраструктура от «Роснефти», «Газпрома» и «Новатэка».

В конце 2020 года власти Санкт-Петербурга анонсировали [15] запуск каршеринга на водородном топливе совместно с Hyundai. В случае успеха проект расширят и на другие крупные города России.

Перспективы технологии

Вокруг водородных двигателей немало противоречивых заявлений. Одни безоговорочно верят в их будущее — например, Арнольд Шварценеггер еще в 2004 году, будучи губернатором Калифорнии, обещал [16], что к 2010 году весь его штат будет покрыт «водородными шоссе». Но этого так и не произошло. В этом отчасти виноват глобальный экономический кризис: автопроизводителям пришлось выживать в тяжелейших финансовых условиях, а подобные технологии требуют больших и долгосрочных вложений.

Другие, напротив, критикуют технологию за ее очевидные недостатки. Так, основатель Tesla Илон Маск назвал водородные двигатели «ошеломляюще тупой технологией» [17], которая по эффективности заметно уступает электрическим аккумуляторам. Отчасти он прав: сегодня водородным автомобилям приходится конкурировать с электрокарами, гибридами, транспортом на сжатом воздухе и жидком азоте. И пока что до лидерства им очень далеко.

С одной стороны, в Европе Toyota Mirai II стоит несколько дешевле, чем Tesla Model S (€64 тыс. против €77 тыс.) [18]. Полная зарядка водородного автомобиля занимает около 3 минут — против 30-75 минут для электрокара. Однако вся разница — в обслуживании: Toyota Mirai вмещает 5 кг водородного топлива [19] по цене $8-9 за кг. Таким образом, полный бак обойдется в $45, и его хватит на 500 км — получаем около $9 за 100 км пробега. Для Tesla Model S те же 100 км обойдутся всего в $3.

Но у водородного топлива есть существенное преимущество перед электрическими аккумуляторами — долговечность. Если аккумулятора в электрокаре хватает на три-пять лет, то водородной топливной ячейки — уже на восемь-десять лет. При этом водородные аккумуляторы лучше приспособлены для сурового климата: не теряют заряд на морозе, как это происходит с электрокарами.

Есть еще одна перспективная сфера применения водородного топлива — стационарное резервное питание: ячейки с водородом могут снабжать энергией сотовые вышки и другие небольшие сооружения. Их можно приспособить даже для энергоснабжения небольших автономных пунктов вроде полярных станций. В этом случае можно раз в год наполнять газгольдер, экономя на обслуживании и транспорте.

Основной упрек критиков — дороговизна водородного топлива и логистики. Однако Международное энергетическое агентство прогнозирует, что цена водорода к 2030 году упадет минимум на 30% [20]. Это сделает водородное топливо сопоставимым по цене с другими видами [21].

Если вспомнить, как развивался рынок электрокаров, то его росту способствовали три главных фактора:

  1. Лобби со стороны развитых государств: в США [22], ЕС [23], Японии [24], России [25] и других странах приняты законы в поддержку экологичного транспорта.
  2. Удешевление аккумуляторов: согласно исследованию Bloomberg New Energy Finance, за последние десять лет цены на литий-ионные аккумуляторы упали с $1200 до $137 за кВт·ч.
  3. Развитие инфраструктуры: специальные электрозарядные станции и зарядки в крупных бизнес-центрах, на парковках ТЦ и аэропортов.

Водородные двигатели ждет примерно тот же сценарий. В Toyota видят главные перспективы [26] для водородных двигателей в компактных автомобилях, а также в среднем и премиум-классе. Пока что производство не вышло на тот уровень, чтобы бюджетные модели работали на водороде и оставались рентабельными. Современные водородные машины стоят вдвое дороже обычных [27] и на 20% больше, чем гибридные.

Согласно прогнозу Markets&Markets [28], к 2022 году объем мирового производства водорода вырастет со $115 до $154 млрд. Остается главный вопрос: как быть с инфраструктурой? Чтобы водородные двигатели стали массовыми, нужны сети заправок, трубопроводы для топлива, отлаженные логистические цепочки. Все это пока только зарождается. Но и тут есть позитивные сдвиги: например, канадская Ballard Power по заказу китайского Министерства транспорта запустила пилотный проект, в рамках которого водородное топливо можно будет заливать в обычные АЗС.

Двигатель на воде. Как сделать двигатель, работающий на воде

Умельцев собирать всевозможные механизмы из подручных средств в нашей стране всегда хватало. Подтверждением этих слов выступают советские журналы большим тиражом (не будем вспоминать названия), передачи наподобие «Очумелые ручки», книги «Сделай сам», и многочисленные видео в интернете. В этой статье разберем двигатель на воде.

Определения

Все устройства, которые созданы для превращения энергии в механическую работу, называются двигателями.

Двигатель на воде – определение размытое. Под ним можно подразумевать:

  • винтовые двигатели лодочных типов (может использовать двигатель внутреннего сгорания на воде, паровой и другие);
  • двигатели на реактивной тяге (гидроциклы, БТР и опять-таки подлодки);
  • генератор, превращающий энергию воды в механическую работу (двигатель, который работает на воде);
  • паровой двигатель (двигатель, работающий на воде, из-за простоты строения рассмотрен в деталях не будет).

Паровой двигатель устроен подобным образом: в котел заправляется горючее, в цилиндре закипает вода, увесистый поршень сверху под давлением поднимается до тех пор, пока не откроется клапан цилиндра. За счет поршня приходит в движение механизм.

О винтовых двигателях

В водном транспорте преимущественно используется следующий принцип: к двигателю (паровому, электрическому, дизельному, бензиновому и, с меньшей вероятностью, газовому) присоединяют винт определенных параметров.

О двигателях на реактивной тяге

По устройству – воду пропускают через себя за счет винтов (у ракет немного другой принцип). Особенность заключается в направленной струе, за счет которой объект приходит в движение. Для наглядного представления стоит вспомнить принцип работы водяного насоса. Преимуществами подобной системы является эффективность работы при высоких оборотах и относительная бесшумность.

О водных генераторах

Если встанет вопрос «как сделать двигатель на воде?», то за счет вращения винта можно привести в движение ротор. Он, в свою очередь, вызывает в катушках проводника магнитную индукцию. Она вызывает переменный ток. Ток или напрямую приводит в движение объект, или накапливает заряд в батарее. С батареи уже идет распределение на нужды.

Принцип сборки

Разберем примерную структуру цепи, использующей электрогенератор, и прицепим к нему двигатель на реактивной тяге. Это наглядно покажет, как работает определенный элемент. Цепь будет состоять из следующих компонентов: вращающиеся лопасти для генератора переменного тока, преобразователя переменного тока в постоянный, аккумулятора, совместимого электродвигателя, системы реактивной тяги.

Для обеспечения работоспособности генератора необходимо хотя бы примерно представлять скорость вращения ротора. Отталкиваясь от скорости вращения, получаем представление о мощности, которую должен вырабатывать генератор.

Электрический асинхронный генератор переменного тока состоит из статора (неподвижной части) и ротора (вращающейся). Статор состоит из блока наложенных друг на друга листов металла диэлектрика (не проводящих ток) с вырезанными сквозными пазами, и магнитных катушек, вставляющихся в них. Катушки не должны соприкасаться с блоком. Для этого используются специальные прокладки внутри, и стрелки снаружи из изолирующего материала. За пределы пазов они выступать не должны. Также изолируются катушки друг от друга. Форма и элементы ротора могут отличаться друг от друга.

Возьмем за основу двигатели на воде своими руками с расчетом на три фазы, так как данный вид наиболее распространен. Это значит, что будет использовано три катушки одинаковых размеров. В домашних условиях при напряжении в 220 вольт постоянного тока в 19 ампер, потребуется провод с сечением 1,5 миллиметра. Работать будет при условии потребления не выше 4,1 киловатта. Стоит также учесть частоту вращения. Количество вращений в секунду измеряется в герцах. В России принята чистота 50 Герц в секунду для электроники. Провода на выходе соединяются «треугольником» или «звездой».

О физике

Ватт представляет произведение ампер на вольт. Киловатт — это 1000 ватт. Вольт равен произведению Ампер (сила тока) на Ом (сопротивление). Добавляя витки, вы увеличите мощность генератора, но и необходимую требуемую работу при вращении ротора. В данном случае рекомендуется отталкиваться от требований аккумулятора на потребление, а не на отдачу.

Разумеется, возможно сделать расчеты будущего изделия, но в целях безопасности рекомендуется поэкспериментировать с малой мощностью ручного генератора, так как без опыта с первого раза собрать полностью рабочую модель не получится. Причиной этого могут служить мелкие недочеты, неподходящие материалы и прочее, а следствием нарушения техники безопасности — чья-то жизнь. Используйте для начала аккумулятор на 12 вольт и проволоку меньшего диаметра. В качестве ротора — простой ферромагнитный сердечник (железный цилиндр подойдет). Для начала можно сделать авто двигатель на воде для какой-нибудь машинки.

С генератора переменного тока потребуется сделать цепь из трансформатора (высокого напряжения в низкое), 4 диода прямоугольником (одностороннее движение), конденсатор (для бесперебойности), резистор и стабилитрон (ограничение по верхней и нижней планке) и последним регулятор. Вся цепь подключается к накопительной батарее. От батареи непосредственно двигатель под винт. Двигатель можно аналогичный изготовить.

С двигателя для реактивного движения делается вытяжка из проводов (с гидроизоляцией) или бобина. Удлинение размещается у нижнего основания лодки. Винт прикрепляется к нему. Форма винта, углы и количество лепестков по усмотрению.

В маленьком размере получится лодка с ручной подзарядкой и соплом, что обеспечит высокую скорость. Если масштаб увеличить, то при правильном подходе получится мощный двигатель на воде, а главное, появятся навыки.