Выбор уставки теплового реле

Выбор теплового реле для электродвигателя

Тепловое реле РТЛ для электродвигателя

Тепловое реле служит для тепловой защиты электродвигателя. Реле защищает двигатель от перекоса фаз или пропадании фазы, от механической перегрузки и заклинивания ротора.

Тепловое реле двигателя, так же, как и защитный автомат, имеет время-токовую характеристику, которая показывает, что тепловое реле не может сработать при превышении тока уставки мгновенно.

Подробнее про эти характеристики – здесь.

Важно, что спасти от короткого замыкания тепловое реле не может – просто не успеет. Поэтому в цепь питания двигателя всегда перед пускателем ставят автоматический выключатель, предохраняющий от КЗ.

Во всех современных “теплушках” есть одна пара нормально открытых (НО, NO) контактов и одна пара нормально закрытых (НЗ, NC). Обычно схему питания контактора строят так, что при срабатывании теплового реле НЗ контакты разрывают цепь питания катушки контактора, а НО контакты замыкаются и включают цепь индикации аварии.

Тепловая защита электродвигателя заключается в том, что при прохождении через силовые контакты теплового реле тока двигателя нагревается специальная биметаллическая пластина, которая приводит в действие сигнальные контакты. Контакты слаботочные, и включаются в цепь управления пускателем.

При срабатывании реле необходимо устранить причину аварии, затем привести реле в исходное состояние. Для этого на корпусе имеется красная кнопка возврата, на которой напечатана буква R (Reset). В некоторых моделях возврат осуществляется автоматически.

Тепловое реле РТЛ. Контакты для механической и электрической фиксации в пускателе

Как правило, тепловое реле крепится непосредственно на выходные контакты пускателя. И без пускателя не используется. Соответственно, тепловое реле включено с двигателем последовательно.

Для различных вариантов пускателей необходимо передвинуть выводы (контакты) теплового реле для правильной фиксации.

На фото видно (слева), как рекомендовано передвинуть ножки для разных пускателей.

Фиксация также обеспечивается специальным крючочком, который зацепляется за пускатель.

Такие тепловые реле можно применять только для контакторов советских разработок типа ПМЛ, для других производителей тепловые реле РТЛ могут не подойти.

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей.

Номинальный
ток пускателя, А

Тип реле

Диапазон регулирования максимального тока, А

Мощность
электродвигателя, кВт

Распространенные марки тепловых реле – РТЛ и РТИ, которые по параметрам идентичны, и отличаются в основном креплением и конструкцией.

В интернете гуляет табличка выбора теплового реле двигателя по мощности, где подробно перечислены параметры тепловых реле серии РТЛ. Стоит сказать об ошибке – во второй строке внизу вместо “РТЛ-ЮООМ” следует читать “РТЛ-1000М”. Кто-то распознавал бездумно.

• Выбор теплового реле / Выбор электротеплового реле — таблица параметров, pdf, 34.01 kB, скачан: 6688 раз./

И ещё фото старенькой теплушки, фото новых легко найти в интернете.

Такое тепловое реле ставится на пускатель ПМЕ.

Подробно про схему подключения теплового реле и схему подключения пускателя к трехфазному двигателю рассказано в другой моей статье. Рекомендую.

Книги по электродвигателям

• В.Л.Лихачев. Асинхронные электродвигатели. 2002 г. / Книга представляет собой справочник, в котором подробно описано устройство, принцип работы и характеристики асинхронных электродвигателей. Приводятся справочные данные на двигатели прошлых лет выпуска и современные. Описываются электронные пусковые устройства (инверторы), электроприводы., djvu, 3.73 MB, скачан: 6295 раз./

• Беспалов, Котеленец — Электрические машины / Рассмотрены трансформаторы и электрические машины, используемые в современной технике. Показана их решающая роль в генерации, распределении, преобразовании и утилизации электрической энергии. Даны основы теории, характеристики, режимы работы, примеры конструкций и применения электрических генераторов, трансформаторов и двигателей., pdf, 16.82 MB, скачан: 1939 раз./

• Каталог двигателей Электромаш / Асинхронные электродвигатели с короткозамкнутым ротором — каталог производителя, pdf, 3.13 MB, скачан: 1121 раз./

• Каталог двигателей ВЭМЗ / Параметры и каталог двигателей, pdf, 3.53 MB, скачан: 952 раз./

• Дьяков В.И. Типовые расчеты по электрооборудованию / Практические расчеты по электрооборудованию, теоретические сведения, методики расчета, примеры и справочные данные., zip, 1.53 MB, скачан: 1957 раз./

• Карпов Ф.Ф. Как проверить возможность подключения нескольких двигателей к электрической сети / В брошюре приведен расчет электрической сети на колебание напряжения при пуске и самозапуске асинхронных двигателей с короткозамкнутым ротором и синхронных двигателей с асинхронным пуском. Рассмотрены условия, при которых допустим пуск и самозапуск двигателей. Изложение методов расчета иллюстрируется числовыми примерами. Брошюра предназначена для квалифицированных электромонтеров в качестве пособия при выборе типа электродвигателей, присоединяемых к коммунальной или промышленной электросети., zip, 1.9 MB, скачан: 1178 раз./

• Руководство по эксплуатации асинхронных двигателей / Настоящее руководство содержит наиболее важные указания по транспортировке, приемке, хранению, монтажу, пусконаладке, эксплуатации, техническому обслуживанию, поиску неисправностей и их устранению для электродвигателей производства «Электромашина». Руководство по эксплуатации предназначено для трехфазных асинхронных электродвигателей низкого и высокого напряжений серий А, АИР, МТН, МТКН, 4МТМ, 4МТКМ, ДА304, А4., pdf, 7.54 MB, скачан: 2189 раз./

• Таблица выбора теплового реле. / Выбор теплового реле., pdf, 34.01 kB, скачан: 3777 раз./

• Иноземцев Е.К. Ремонт асинхронных электродвигателей / Иноземцев Е.К. Ремонт асинхронных электродвигателей электростанций. Рассмотрены конструкция и техническая характеристика асинхронных электродвигателей серий А, АО. А2, А02,4А, АИ, 5А, 6А, А, КА, АДА, ДАН, АН, АД, 2 АС ВО, 4МТН, А2К, А2КП, ДАСК, ВРА, АВР, АВРМ, 2ВРМ, ЗВРМ, ВРПВ, АИУВ, ВРФВ, АВТ. Изложена технология ремонта электродвигателей и их узлов, разборочно-сборочных работ. Приведены приспособления для выполнения работ с учетом передовых методов ремонта и технологий. Рассмотрены вопросы сушки электродвигателей, а также электрических испытаний и измерения обмоток., djvu, 1.84 MB, скачан: 512 раз./

• Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором / Торопцев Н. Д. Трехфазный асинхронный двигатель в схеме однофазного включения с конденсатором. 2000 — 72 с; ил. [Библиотечка электротехника, приложение к журналу «Энергетик», Вып. 7(19)]. Рассмотрены особенности применения трехфазного асинхронного двигателя в качестве конденсаторного, а также различные схемы включения. Даны простые соотношения для определения рабочей емкости конденсатора. Приведены основные технические данные трехфазных асинхронных двигателей серий КА и 4А (сельскохозяйственного назначения), а также конденсаторов различных типов., djvu, 1.84 MB, скачан: 620 раз./

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1491 раз./

Как выбрать тепловое реле для двигателя по мощности и току: разъясняем досконально

Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.

Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.

Читайте также  Тепловой насос для нагрева воды

Конструктивное исполнение тепловых реле

Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.

Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.

Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.

Состоит прибор из корпуса, нихромового нагревателя, биметаллической пластины, защелки, винта, рычага, подвижного контакта и кнопки возврата (+)

Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.

Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.

Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.

Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.

Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.

Тепловое реле ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)

Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.

При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.

Итак, начнем с самого сложного. Что делать, если паспортные данные двигателя не известны?

Для этого случая рекомендуем токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.

В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.

Читаем какой номинальный ток двигателя при подключении к сети 380 вольт (Iн). Этот ток, как мы видим на шильдике двигателя, Iн = 1,94 Ампера

Выбор теплового реле по мощности двигателя

У теплового реле есть один основной параметр, показывающий ток, при котором реле отключит электродвигатель. Ниже приводится таблица по выбору теплового реле для электродвигателей.

Номинальный
ток пускателя, А

Тип реле

Диапазон регулирования максимального тока, А

Мощность
электродвигателя, кВт

Тепловое реле для электродвигателя

Подписка на рассылку

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Тепловое реле двигателя – аппарат, предназначенный для его защиты от перегрузок, приводящих к перегреву обмоток и, как следствие, к преждевременному старению или разрушению изоляции. А двигатели — устройства очень дорогие, часто устанавливаются в ответственных узлах технологической схемы. Работоспособность их и возможность профилактического своевременного ремонта и обслуживания очень важны. Вот поэтому выбор теплового реле очень важный вопрос при сборке схемы питания и защиты этих электроаппаратов.

Как выбрать тепловое реле? Правильнее всего выполнять подбор теплового реле по мощности двигателя, а если быть точнее, то по номинальному току обмоток. Каждый двигатель имеет заводскую маркировку или паспорт, в которых указаны его характеристики. В примере приведена табличка на двигатель мощностью 0,55 кВт, с номинальными токами 2,7/1,6 А и номинальным напряжением 220/380 В при соединении обмоток, соответственно, по схемам Δ/Y.

Если табличка частично повреждена, но остались некоторые данные, то номинальный ток по разным схемам соединения обмоток можно вычислить по формуле:

Например, номинальный ток двигателя для обмотки, соединенной в звезду составит:

Рассматривая условия выбора теплового реле, следует обратить внимание на такие его основные параметры, как:

— номинальное напряжение и род тока, которые должны соответствовать подключаемой сети;
— номинальный ток реле;
— диапазон токовых уставок, настройка которых как раз выполняется для обеспечения тепловой защиты;
— класс расцепления от 5 до 40, регламентируемый ГОСТ Р 50030.4.1-2012, который определяет время срабатывания реле при одних и тех же нормируемых кратностях перегрузок. Реле с высоким классом (20,30) предназначены для тяжелых условий пуска двигателей. Расчет и выбор тепловых реле с учетом класса расцепления позволяет предопределить время срабатывания теплового реле с отстройкой от времени пуска двигателя.

Как видно, какой — то специфический расчет теплового реле не требуется. Зная номинальный ток двигателя, достаточно подобрать реле по соответствующему номинальному току и диапазонам регулировок токовых уставок. Далее у реле необходимо выставить уставку, равную номинальному току двигателя. Этот ток называется, по-другому, «током несрабатывания», так как при длительном протекании тока данной величины устройство не сработает. В соответствии с ГОСТ 16308-84 и заводскими инструкциями тепловое реле при температуре окружающего воздуха около (25±10)°С в установившемся тепловом состоянии сработает в течение 20 мин при токе, равном 1,2 токовой уставки, то есть при перегрузке 20 %. И чем выше ток перегрузки, тем быстрее это произойдет. Необходимая токовая уставка устанавливается специальным регулятором.

Также можно сделать подбор теплового реле по мощности двигателя для конкретного типоисполнения реле с соответствующими токовыми уставками по таблицам и рекомендациям, приведенным производителями в инструкциях или в технической информации. Линейки выпускаемых тепловых реле достаточно обширны у разных производителей. Подобрать подходящий защитный аппарат под свои нужды не составит труда. Таблица ниже приведена для реле типа РТЛ.

Еще в заводской документации можно найти время — токовые характеристики, представленные в виде нелинейных графиков.

Зная мощность и ток, потребляемые двигателем, используя приведенные производителями графики и меняя токовую уставку, можно при необходимости корректировать время срабатывания. Коррекцию необходимо производить для исключения ложных срабатываний, обусловленных зачастую особенностями рабочих режимов работы двигателей.


Стоит при выборе также учитывать, что конструктивно тепловые реле бывают электромеханические или электронные. Электронные реле имеют более сложное устройство за счет наличия электронных схем, получающих информацию от встроенных измерителей.

Монтироваться реле могут непосредственно на контакты пускателя или контактора, либо устанавливаться индивидуально отдельностоящими с применением рекомендованных производителем клеммников.

Тепловое реле. Устройство, принцип действия, схема включения теплового реле.

Чтобы правильно защитить электродвигатели от аварийных режимов, необходимо знать основные причины их отказов. Основные аварийные режимы возникают из-за:

• обрыва фазы (ОФ) — 40-50 %;

• заторможения ротора (ЗР) — 20-25 %;

• технологических перегрузок (ТП) — 8-10 %;

• понижения сопротивления изоляции (ПСИ) — 10-15 %;

Читайте также  Укладка теплового пола

• нарушения охлаждения (НО) — 8-10 %.

Вероятность срабатывания некоторых устройств защиты, применяемых в сельском хозяйстве, от основных аварийных режимов электродвигателей приведена в таблице 1.1.

Как видно из таблицы 1.1, для защиты электродвигателей от технологических перегрузок, а также от обрыва фазы и заторможения ротора с успехом могут быть использованы тепловые реле, которые работают в сочетании с магнитным пускателем.

Для защиты электрооборудования от перегрузки по току широкое применение нашли тепловые реле типов РТ, ТРН, ТРП, РТЭ, РТТ, РТЛ, РТЛ.У.

Тепловые реле типа ТРН сняты с производства, одно еще достаточное количество их эксплуатируется в сельском хозяйстве.

Тепловое реле состоит из биметаллической пластинки, нагревательного элемента, контактов с пружиной и защелкой (рис. 1.1).

Автоматические выключатели АП-50

Устройства встроенной тепловой защиты (УВТЗ-5)

Устройства защитного отключения по току утечки (УЗО)

Биметаллическая пластина состоит из двух металлов, прочно сваренных между собой по всей поверхности и имеющих различные температурные коэффициенты линейного расширения а. Один металл (инвар) имеет малый коэффициент линейного расширения и называется пассивным. Другой (хромоникелевая сталь) имеет большой коэффициент а и называется активным. При нагревании активный слой стремится удлиниться на большую величину, чем пассивный и, как следствие этого, возникает изгибающий момент.

Рис. 1.1. Конструктивная схема теплового реле типа ТРП: 1 — биметаллическая пластина; 2 — нагревательный элемент; ограничивающие выступы; 4 — пружина; 5 — неподвижный контакт; 6 — прыгающий контакт

Рис. 1.2. Тепловое реле ТРП: 1 — биметаллическая пластинка; 2 — упор самовозврата; 3 — держатель подвижного контакта; 4 — пружина; 5 — подвижный контакт; 6 — неподвижный контакт; 7 — сменный нагреватель; 8 — регулятор тока уставки; 9 — кнопка ручного возврата

Реле серии ТРП на токи 1-600 А в основном используется в магнитных пускателях серии ПА и имеет комбинированную систему нагрева. Исключение — реле ТРП-600 (рис. 1.2).

Биметаллическая пластина 1 нагревается как за счет прохождения через нее тока, так и за счет нагревателя 7. При прогибе конец биметаллической пластины воздействует на прыгающий подвижный контакт 5. Реле допускает плавную ручную регулировку тока срабатывания в пределах ± 25 % номинального тока уставки. Эта регулировка осуществляется ручкой 8, меняющей первоначальную деформацию биметаллической пластины. Возврат реле в исходное положение после срабатывания производится кнопкой 9. Возможно исполнение и с самовозвратом после остывания биметалла. Высокая температура срабатывания (выше 200 °С) уменьшает зависимость работы реле от температуры окружающей среды.

Реле серии РТ являются аппаратами открытого исполнения с косвенной системой нагрева. Регулирование тока срабатывания реле РТ в небольших пределах осуществляется с помощью рычага, перемещение которого изменяет ход конца биметаллической пластины при нагревании до освобождения защелки. Более широкое регулирование тока срабатывания осуществляется заменой нагревательных элементов. Имеется 56 номеров нагревательных элементов на 0,64-40 А.

Реле ТРВ служит для защиты двигателей с легкими условиями пуска, выпускается 20-ти исполнений на токи до 200 А.

Реле серии ТРН выпускаются на токи 0,5-40 А с термокомпенсацией. Используются в основном в магнитных пускателях серии ПМЕ и ПА, имеют косвенный нагрев с помощью пластинчатых ни- хромовых нагревателей.

На рисунке 1.3 приведена конструктивная схема теплового реле ТРН, предназначенного для магнитных пускателей типов ПМЕ и ПМА (табл. 1.2). Биметаллическая пластина 2 при прохождении тока, превышающего заданный, изгибается и перемещает вправо пластмассовый толкатель 11, связанный жестко с биметаллической пластиной 3, выполняющей роль температурного компенсатора. Отклоняясь вправо, пластина 3 нажимает на защелку 8 и выводит ее из зацепления с пластмассовым движком 5 уставок, в результате чего под действием пружины 10 пластмассовая штанга 7 расцепителя отходит кверху (показана пунктиром) и размыкает контакты 9 в цепи управления магнитным пускателем. Движок уставок можно перемещать, поворачивая эксцентрик 4 и изменяя расстояние между концами пластины 3 и защелкой 8, а значит, и ток срабатывания реле.

Температурная компенсация заключается в том, что изгибанию биметаллической пластины 2 при изменении окружающей среды соответствует противоположное по направлению изгибание пластины компенсатора 3. Таким образом достигается независимость тока уставки от окружающей температуры. Ток уставки можно менять в пределах от 0,75 до 1,3 номинального тока нагревательного элемента.

Рис. 1.3. Конструктивная схема теплового реле типа ТРН: 1 — нагревательный элемент; 2 — биметаллическая пластина; 3 — биметаллическая пластина температурного компенсатора; 4 — эксцентрик; 5 — движок уставки; 6 — кнопка «Возврат»; 7 — штанга расцепителя (тяга); 8 — защелка; 9 — контакты; 10 — пружина; 11 — толкатель

Регулировка и настройка тепловых реле и расцепителей автоматических выключателей

Основным средством защиты электроприводов от перегрузок в настоящее время являются тепловые реле, а также автоматические выключатели с тепловыми расцепителями. Наибольшее распространение получили двухполюсные реле типа ТРН и ТРП, а также трехполюсные — РТЛ, РТТ. Последние имеют улучшенные характеристики и обеспечивают защиту от несимметричных режимов.

При 20 % перегрузке тепловое реле должно отключать электродвигатель за время не более 20 мин, а при двукратной перегрузке — примерно за 2 мин. Однако это требование часто не выполняется по той причине, что номинальный ток нагревательного элемента теплового реле не соответствует номинальному току защищаемого электродвигателя. На работу тепловых реле существенное влияние оказывает температура окружающей среды.

Основным параметром тепловых реле является время-токовая защитная характеристика, т. е. зависимость времени срабатывания от величины перегрузки.

Первая из них — для реле, находящегося в холодном состоянии (разогрев током начинается, когда реле имеет температуру, равную температуре окружающей среды), и вторая — для реле, находящегося в горячем состоянии (режим перегрузки наступает после работы реле в течение 30 — 40 мин под номинальным током).

Рис. 1. Защитные характеристики теплового реле: 1 — зона срабатывания из холодного состояния, 2 — зона срабатывания из горячего состояния

Для обеспечения надежного и своевременного отключения электродвигателя при перегрузке тепловое реле должно настраиваться на специальном стенде. При этом исключается ошибка из-за естественного разброса номинальных токов заводских нагревательных элементов.

При проверке и настройке тепловой защиты на стенде используется так называемый метод фиктивных нагрузок. Через нагревательный элемент пропускают ток пониженного напряжения, имитируя таким образом реальную нагрузку, и по секундомеру определяют время срабатывания. В процессе настройки необходимо стремиться к тому, чтобы 5. 6-кратный ток отключался через 9 — 10 с, а 1,5-кратный через 150 с (при холодном состоянии нагревателя).

Для настройки тепловых реле можно использовать серийно выпускавшиеся cпециализированные стенды.

На рис. 2 показана схема такого устройства. Приспособление состоит из маломощного нагрузочного трансформатора TV2, к вторичной обмотке которого подключается нагревательный элемент теплового реле КК, а напряжение первичной обмотки плавно регулируется автотрансформатором TV1 (например ЛАТР-2). Ток нагрузки контролируется амперметром РА, включенным во вторичную цепь через трансформатор тока.

Рис. 2. Принципиальная схема установки для проверки и настройки тепловых реле

Тепловое реле проверяют следующим образом. Ручку автотрансформатора устанавливают в нулевое положение и подают напряжение, затем поворотом ручки устанавливают ток нагрузки I = 1,5 I ном и секундомером контролируют время срабатывания реле (в момент погасания лампы HL). Операцию повторяют для остальных нагревательных элементов реле.

Читайте также  Тепловой расцепитель это

Если время срабатывания хотя бы одного из них не соответствует норме, тепловое реле следует отрегулировать. Регулировка производится специальным регулировочным винтом. При этом добиваются, чтобы при токе I = 1,5 I ном время срабатывания составляло 145 — 150 с.

Отрегулированное тепловое реле следует настроить на номинальный ток двигателя и температуру окружающей среды. Это делают в том случае, когда номинальный ток нагревательного элемента отличается от номинального тока электродвигателя (на практике в основном так и бывает) и когда температура окружающего воздуха ниже номинальной ( + 40° С) более чем на 10° С. Токовую уставку реле можно регулировать в пределах 0,75 — 1,25 номинального тока нагревателя. Настройка производится в следующей последовательности.

1. Определяют поправку (E1) реле на номинальный ток двигателя без температурной компенсации ±Е1 = ( I ном- I о)/С I о,

где Iном — номинальный ток двигателя, I о — ток нулевой уставки реле, С — цена деления эксцентрика (С = 0,05 для открытых пускателей и С = 0,055 для защищенных).

2. Определяют поправку на температуру окружающей среды E2=(t — 30)/10,

где t — температура окружающей среды, °С.

3. Определяют суммарную поправку ±Е=(±Е1) + (-Е2).

При дробной величине Е ее следует округлить до целого в большую или меньшую сторону в зависимости от характера нагрузки.

4. На полученное значение поправки переводят эксцентрик теплового реле.

Тщательно отрегулированные тепловые реле типа ТРН и ТРП имеют защитные характеристики, мало отличающиеся от средних. Однако такие реле не обеспечивают защиту электродвигателя в случае заклинивания, а также электродвигателей, не запустившихся при обрыве фазы.

Помимо магнитных пускателей c тепловыми реле в электроприводах для нечастых пусков их и защиты электрических цепей от коротких замыканий используются автоматические выключатели. При наличии комбинированных расцепителей такие аппараты защищают электроприемники также от перегрузки. Характерные параметры автоматических выключателей: минимальный ток срабатывания — (1,1. 1,6) I ном, уставка электромагнитного расцепителя — (3 — 15) I ном, время срабатывания при токе I = 16 I ном — менее 1 с.

Испытание тепловых элементов расцепителей автоматов проводят аналогично проверке тепловых реле. Испытание выполняется током 2 I ном при температуре окружающей среды +25° С. Время срабатывания элемента (35 — 100 с) должно находиться в пределах, указанных в заводской документации или найденных по защитной характеристике каждого автомата. Настройка тепловых элементов заключается в установке при помощи винтов биметаллических пластинок на одинаковое время срабатывания при одинаковом токе.

Для проверки электромагнитного расцепителя автоматического выключателя через него от нагрузочного устройства пропускают ток на 15% меньше тока уставки (тока отсечки). Затем плавно увеличивают испытательный ток до отключения аппарата. При этом максимальное значение тока срабатывания не должно превышать ток уставки электромагнитного расцепителя более чем на 15 %. Испытание проводится не более 5 с во избежание недопустимого перегрева контактов выключателя.

Для проверки расцепителя минимального напряжения на зажимы автоматического выключателя подают напряжение U = 0,8Uном и включают аппарат, затем напряжение плавно понижают до момента срабатывания Uc = (0,35 — 0,7)Uном.

В последнее время в промышленности стали использовать полупроводниковые аппараты защиты и управления. Вместо обычных магнитных пускателей, например, применяют специальные тиристорные блоки. Техническое обслуживание таких устройств заключается в периодических внешних осмотрах и проверке работоспособности.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети: