Как гнуть тепловые трубки?

Сложный путь к бесшумному компьютеру

Идея полностью бесшумного компьютера донимала меня давно. Пыль, шум, возможность выхода из строя кулеров — все это напрягало.

Была самоделка водяного охлаждения, которая охлаждала ЦП, видяху, мост, мосфиты, БП — в общем все, и выводила на большой радиатор (печку от машины) где вся мощность сдувалась двумя тихими 140мм кулерами. Пыль почти не беспокоила, т.к. радиатор находился за пределами корпуса, шум тоже — но хотелось большего. Абсолютной тишины. Отсутствия кулеров. И, желательно, большой мощности.

Прогнав в голове возможные варианты конструкции, вдохновившись опытом строителей подобных корпусов, приступил к начальным исследованиям. Первоначально предполагалось использовать процессор i7 3770k, видеокарту gtx660ti и ssd накопитель. TDP в сумме превышал 220 ватт, что строило в воображении корпус на 35-40 килограмм с необходимой площадью 2 квадратных метра. Немного позже я узнал, что TDP это максимальное тепловыделение, по сути пик, который обязана выдержать система охлаждения. Реальное потребление системы оказалось около 180 ватт.

Часть тепла выдает и блок питания, но мне удалось найти с максимальным, до 88% кпд. Это termaltake TR-2 600W. Причем указанная мощность — продолжительная, что мне более чем подходило.

После выбора и закупки комплектующих был выбран и источник тепловых трубок — знаменитый Thermaltake Big Typhoon. Теплоотводы должны были быть распределены таким образом, чтобы отводить тепло на максимум площади, площадь видеокарты при этом была бы больше чем процессора, а блоку питания оставалось бы совсем чуть чуть. Так как корпус планировалось собрать, используя 6 вертикальных профилей -радиаторов и 6 «крышек» из этого же профиля, процессору доставалось бы два профиля и две верхних крышки, а видеокарте — три профиля и три нижних крышки.

Итак, железо закуплено, пустились во все тяжкие.

В конторе, рядом с местом, где я работаю, продавался этот замечательный профиль. Не силумин, отличная теплопроводность и внешний вид. Были заказаны 6 профилей длиной 300мм и 6 «крышек» 150мм.

Была куплена фреза для обработки дерева, для скругления крышек.

Острый край скруглен.

На ЧПУ станке в «крышках»проделаны пазы, которые бы являлись продолжением основного профиля.

Начинаем подгонку железа.

Теплоотвод процессора и видеокарты. Подгонка комплектующих.

… и почти все дружно летит в ведро.

Дело в том, что по своей натуре я идеалист, а изначальная цель была поставлена — сделать относительно простую в повторении конструкцию, а не что то уникальное. На изготовление и закрепление теплоотводов видеокарты было потрачено слишком много времени, все выглядело слишком… топорно, чтоли, и уж точно не технологично. Поэтому было решено — черт с ним, будем ВСЕ переделывать, благо толком то ничего и не сделано 🙂 К тому же в этот момент не запустилась материнская плата, неизвестно почему — и было решено заменить её на подобную по типоразмеру, более современную и под другой процессор, 4го поколения. А этот проц сохранить для будущей медиа системы.

Итак, идеология поменялась. Если раньше использовались трубки 6мм от Big Typhoon и они паялись на основания, то сейчас это — Termaltake Contac 39, никакой пайки — тот же direct contact. Извлекать трубки одно удовольствие — распилил основание, разогнул, вынул трубки, снял ребра. Big Typhoon же пока не «разденешь» — не распаяешь, ребра отводят тепло. Плюсик в технологичность.

Блок отвода тепла с видеокарты. Он состоит из двух половинок — сверху и снизу видеокарты, между половинками — теплопроводная резина. Тепло с нижней половинки переходит на тепловые трубки, а они отводят тепло на два блока — один для нижней, другой для боковой стенки радиатора. Для улучшения теплоотвода с процессора в центр пластины заклеен медный сердечник. Всего используются четыре тепловые трубки.

Теплоотвод для процессора. Было решено отказаться от «паука» трубок для процессора, и обойтись двумя. На коробке с кулером было написано — до 180 ватт, одна трубка сможет провести 55-60 ватт.

Для материнской платы теплоотвод сделан так же как для видеокарты: «ванна», в которую укладывается теплопроводная резина, и сверху прикручивается плата. Потом эта «ванна» прикручивается к радиатору.

Все поверхности были выведены на фрезерном станке, и отшлифованы.

Заключительный этап — переработка блока питания для работы в пассивном режиме, организация проводки питания и необходимых разъемов — сброс, светодиоды, питание, USB 3.0 на передней панели. С USB пришлось повозится — штатный выкидыш не влезал из за разъема на материнскую плату, разъем был безжалостно срезан и перераспаян.

Заднюю и переднюю стенку сделал с ручками, они же ножки. Т.к. они симметричны, корпус не имеет низа и верха, поставить его можно как угодно.

Под передней стенкой закрепил коробочку из оргстекла — в ней располагается съемный жесткий диск 2.5», кнопки включения, светодиоды и передний USB 3.0.

Толкатели кнопок сделаны из матового оргстекла.

При пробной сборке сендвича видеокарты была ошибка — не было контакта кристала с медным сердечником, буквально не хватало 0.1мм. Однако, процессор вполне работал без запуска игр, не перегревался и температура держалась около 40-45 градусов! Что говорит о достаточной эффективности охлаждения «через плату» на заднюю стенку.

Поняв, что таким образом можно еще нехило сбить температуру процессора с его знаменитой дебильной термопастой под крышкой (заменить было стремно) было решено отвести часть тепла вниз, на материнскую плату, используя дырку в сокете. Дырка была набита силиконовой тепло-прокладкой, температура перестала скакать и снизилась на 3-5 градусов.

Первое включение и прогоны 3dmark и игр показали результаты немного хуже, чем ожидалось. Температура ядра видяхи поднимается до 75 градусов за 2 часа, и еще на пару градусов в последующее время. Температура процессора при работе без видяхи не поднималась выше 45 градусов. Сам системник при этом был в первом случае- горячий как печь, во втором — чуть теплый. Учитывая, что это вполне нормальная температура для такой видеокарты — вполне неплохо.

Общие габариты корпуса 440х340х140мм с учетом ручек. Напоследок — несколько фото готового корпуса.

Тема: Проектируем тепловую трубу.

Опции темы
  • Версия для печати
  • Подписаться на эту тему…

Проектируем тепловую трубу.

. всё более и более часто используется в компьютерах.
Известно , что тепловая труба передаёт тепло чуть ли не в тысячу раз эффективнее меди.
Задача — эффективно передать тепло с площади примерно 1квсм транзистора на пощадь в десятки раз больше радиатора на задней стенке корпуса.

Видится такая конструкция:
1.Берётся медная пластина толщиной примерно 5мм, которую собираемся прикручивать на заднюю ребристую стенку корпуса.
2.Берём полоску жести шириной 5-10мм и припаиваем оную торцом ввиде некоего замкнутого заборчика на медную пластину примерно по её периметру, оставляя место для дырок под крепёж в углах пластины. При этом к нижней части пластины «заборчик» сходится как бы конусом.
3.Сверху заборчика припаиваем кусок жести, создавая тем самым замкнутый объём над медной пластиной.
4.Транзистор припаиваем к жести в нижней её части, где сходится под углом заборчик.
5. Через отверстие в жести заливаем жидкость, например спирт, примерно на оду треть замкнутого объёма и запаиваем отверстие.
6. Прикручиваем пластину к задней ребристой стенке.

Идея понятна, спирт внизу вскипает от транзистора. Конденсирутся на медной пластине вверху и стекает обратно к транзистору.

Будет работать?
Какая будет критика и дополнения?

Выбор жидкости. Нужно ли какое нибудь смачивающее покрытие во внутренней части пластины, или и так будет работать? И т.д и т.п.
Каков ожидается эффект?

Re: Проектируем тепловую трубу.

Re: Проектируем тепловую трубу.

Эта. нафиг нужно.
Трудозатраты огромны.Без вакуумирования не обойтись.

Re: Проектируем тепловую трубу.

Работать будет. Только не все функции выполнять
Ничего на свете нахаляву не бывает.
Надо обеспечить качественный отвод тепла от кристалла к теплоносителю. И надо обеспечить достаточный поток теплоносителя.

Ну и если так уж захотелось — купи готовую вместе с радиаторами.

У меня на древнючей видяхе стоит от zalman, только потому что не шумит. По качеству — родной тухленький кулер был ничуть не нуже. Пара трубок, перепад ощутимый, ну не меньше чем градусов 15. Точно мерить лень.
Вобщем нет никакой супер эффективности как в рекламах пишут. Принудительная циркуляция даст несравнимо лучший эффект.

Re: Проектируем тепловую трубу.

Эта. нафиг нужно.
Трудозатраты огромны.Без вакуумирования не обойтись.

Трудозатраты как написано не шибко большие. Зато позволит вплотную использовать более низковатные, а значит более высокочастотные и т.д. транзисторы ближе к режиму А. Увеличение тока покоя в разы снижает уровень искажений в десятки разов.
А вакуумирование зачем? Кто в чайнике воду вакуумирует?

Добавлено через 3 минуты

Между транзистором и теплоносителем тонкий кусочек жести. И поток д.б. не слабый. Как только вскипит, так сразу как из сопла устремится вверх на всю площадь медной пластины.

Читайте также  Как подобрать тепловое реле для электродвигателя?

Добавлено через 40 секунд

Система с насосами?

Последний раз редактировалось SashaNetrusov; 14.01.2008 в 16:54 . Причина: Добавлено сообщение

Re: Проектируем тепловую трубу.

Ужас какой. Вы бы еще криоустановку применили. Они тоже используются для охлаждения компьютеров, даже продаются корпуса с такми охладителями -20° на кристалле — мечта да и только.

Re: Проектируем тепловую трубу.

Где тут аужас? Из дифицитов только медная пластина. Остального как грязи. и немного паяльных работ.

Re: Проектируем тепловую трубу.

Насколько я читал про тепловые трубы — вакуумирование обязательно, иначе весь смысл теряется. А если труба не вертикальная, то совершенно обязателен капиллярный слой на стенках, дабы обеспечить возврат сконцентрировавшегося теплоносителя в зону испарения.
Бросьте вы это, есть на планете другие чудеса.

Re: Проектируем тепловую трубу.

Интересовался я в свое время этой темой. У самого тех средств не было реализовать, а потом и серийные пошли — комповые системы.
В кратце тут такие дела:
1. Тепловые трубки называют еще тепловыми сверхпроводниками — отому что перепада температуры по длине такого проводника почти нет, а тепловой поток при этом может быть огромным (по сравнению с тем, что можно пропустить через теплопроводность металла такого же сечения).
2. Принцип работы тепловой трубы таков, что если не вакууммировать, то работать (переносить тепло) она начнет только после достижения температуры кипения теплоносителя (причем она будет выше чем у того же теплоносителя в атмосфере, т.к. пространство замкнутое и давление там будет подниматься при нагреве, а значит и температура кипения тоже). Т.е. пока транзистор не нагреет всю трубу до, допустим, 100градусов цельсия, тепловая труба будет не сверхпроводником, а изолятором. Если вакууммировать, то работает от температуры замерзания теплоносителя.
3. Теоретически рассчитать параметры трубы практически не реально — искал в библиотеках, спец теории нету, только эмпирические данные и там уж кто во что горазд..
Проще всего сделать действительно трубку — запаять один конец, заполнить ее на 1/4 ацетоном (Т кипения 54С против 78 у спирта, хладоны и фреоны уж не предлагаю, хотя они были бы идеальны). Засунуть в кипяток и когда закипит, подождать пока потоком пара вытеснит весь воздух из самой трубы и в этот момент зажать второй конец. Главное прочно, чтобы герметичность была полная. Ну а потом уложить ее так, чтобы один ее конец прижимался (можно слегка сплющить) к корпусу транзистора, а другой змеевиком шел по радиатору большой площади. Главное чтобы конец, который у транзистора был ниже всей остальной трубы — чтобы теплоноситель стекал иначе высохнет и перегреется. Или можно фитиль внутрь засунуть на всю длину трубы — просто оплетка от коаксиального провода, тогда может работать в любом положении — возврат жидкости в горячую зону идет за счет капиллярных сил — так в комповых, кстати и сделано.

Re: Проектируем тепловую трубу.

SashaNetrusov, насколько я помню тепловая трубка без фитиля называется темосифоном, отличие в том что в тепловой трубке жидкость возвращается в зону испарения под действием капиллярных сил, а в термосифоне под действием гравитационных сил.
Вообще на моддерских сайтах (комповых) есть примеры изготовления термосифонов и трубок и вроде вполне успешные. Хотя многие просто используют трубки от готовых кулеров.
Сама идея кажется интересной, т.к. теперь расширяется простор для различных вариантов конструктива усилителей, т.к. трубкой мы можем отвести тепло от транзистора находящегося практически в любой точке внутри корпуса усилителя и т.о. мы отвязываемся от классического расположения радиаторов по бокам корпуса. Возможно это не такая уж и насущная необходимость, но может быть в каких то случаях это может и пригодиться.

Как гнуть металлопластиковые трубы 3 надёжных варианта качественной деформацииВставитьизменить ссылку

Особенности полиэтилена низкого давления

Из полиэтилена низкого давления ( ПНД или HDPE ) изготавливаются трубопроводы 2х видов:

  1. Напорные ( для газо- и водоснабжения).
  2. Безнапорные ( для системы канализации).

Металлические изделия уступают место трубам из полиэтилена в силу его особенностей:

  • непрозрачен в толстом слое;
  • не разрушается биологическими микроорганизмами;
  • устойчив к воздействию ( до +60оС) водных растворов солей, кислот и щелочей;
  • прочный;
  • эластичный ( хорошо гнется, устойчив к растяжению и сжатию);
  • не поддается коррозии;
  • долговечный ( от 50 до 80 лет в эксплуатации);
  • маленький вес.
  • практически не засоряются;
  • легко монтируются;
  • дешевле металлических.

Радиус изгиба

В основном, трубу сгибают на стандартные углы 90о, 60о, 45о,30о, но по необходимости можно задать любой радиус изгиба трубы ПНД, не превышающий 90о.

Температура плавления

При температуре +80оС полиэтилен низкого давления размягчается, а температура плавления его: от +130о С до +137о С. Именно при такой температуре производятся трубы ПНД.

Виды трубопроводов тёплых водяных полов

У медных труб самая лучшая теплопроводность

Сборка оборудования тёплых водяных полов – это довольно сложная работа, которая требует привлечение квалифицированного труда. Отопительные контуры монтируют из труб, изготовленных из различных материалов:

  • сшитые полиэтиленовые трубы;
  • металлопластиковые трубопроводы;
  • полипропиленовые системы;
  • трубы из меди.

Каждая система отопления имеет свои достоинства и недостатки. Сравним сшитый полимер с другими материалами для труб в таблице:

Наименование материала Достоинства Недостатки
1 Сшитый полимер Прочный и долговечный материал Трубы подвержены разрушению от ультрафиолета
2 Металлопластик Высокая гибкость Высокая стоимость
3 Полипропилен Низкая цена Трубы сгибают под нагревом
4 Медная труба Универсальность, высокая теплопроводность Самые дорогие трубы

Особенности производства материала

Сшитый полиэтилен своими прочностными характеристиками обязан особой технологии его изготовления. Заключается она в создании трехмерной молекулярной сетки, благодаря применению различных технологий:

  • нагрев полиэтилена в присутствии пероксидов (РЕХ-а);
  • обработка влагой с имплантированным силаном при участии катализатора (РЕХ-в);
  • бомбардировка электронами (РЕХ-с);
  • азотная обработка, которая используется редко.

Характеристика сшитого полиэтилена

Благодаря получению новых характеристик, трубы из этого материала признаются одними из наиболее подходящих вариантов при обустройстве водяного теплого пола.

Это интересно: Схема теплового узла: поясняем суть

Запуск теплого пола

Теплоноситель для нормальной работы системы нагревается до температуры не больше +26 оС.

Запуск отопления, смонтированного из ПЭ труб, проводится по схеме:

  • к трубе-подачи и трубе-обратки подсоединяется коллектор;
  • на коллекторном узле открываются одновременно все краны от контуров;
  • при обозначении «открыто» выставляются клапаны отводчиков воздуха;
  • насос циркуляции приводится в рабочее состояние;
  • задается температура +25 оС;
  • ожидается повышение рабочего давления в отопительной системе до показателя 1 бар;
  • перекрываются все контуры кранами, только один самый длинный остается открытым;
  • фиксируются положение расходомеров и балансиров на бумаге;
  • следующий контур запускается в работу тот, что чуть меньше в длину работающего, но превышает остальные. Используя кран, устанавливается такое же давление – 1 бар. Так подключаются по очереди все контуры.

О качестве выполненной работы в полной мере можно будет судить лишь спустя 3 месяца работы системы.

Правила устройства стяжки

Если гидравлические испытания закончились успешно, разгерметизация труб не произошла, и система полностью наполняется теплоносителем, то этап монтажа труб завершился. Теперь можно приступать к устройству стяжки и к финишной отделке.

Для устройства стяжки необходимо использовать покупной или самостоятельно приготовленный раствор на основе цемента марки М300. Минимальная высота стяжки, обеспечивающая защиту труб из полиэтилена, составляет на 3 см выше уложенной трубы. Такая толщина будет оптимальной для равномерного теплораспределения.

В большинстве случаев стяжка делается сплошная без температурных швов. Термошвы необходимы, когда:

  • помещение имеет площадь более 33 м2;
  • длина комнаты более 10 м;
  • помещение имеет сложную конфигурацию.

Для создания швов используется демпферная лента. Термошвы обрабатываются герметиком.

Нужно ли делать армирование перед заливкой стяжки? Однозначного ответа на этот вопрос нет. Опыт показывает, что система отлично функционирует без армирования, но в то же время армирующий слой придает стяжке дополнительную прочность. Для армирования можно использовать выполненную из металла или пластика сетку 100х100 мм.

Также армирование будет полезным только в том случае, если армирующая сетка будет не просто лежать поверх системы труб, а «утопать» в растворе, при застывании находясь внутри стяжки.

Правильное устройство армирования усложняет укладку стяжки, поэтому, когда нет опыта или уверенности, что все удастся сделать верно, этот этап можно пропустить. После заливки стяжки систему можно запускать не ранее чем через 25-30 дней.

В качестве финишной отделки – верхнего слоя «пирога» может использоваться любое напольное покрытие

Из каких труб лучше делать теплый пол

Труба для теплого пола должна соответствовать вполне определенным требованиям, таким как:

  • устойчивость к механическим нагрузкам;
  • длительный срок эксплуатации;
  • устойчивость к коррозии;
  • экологическая безопасность;
  • невысокий коэффициент линейного расширения;
  • эластичность;
  • высокая теплоотдача;
  • способность поглощать шум.

В той или иной степени этим характеристикам соответствует целый ряд материалов. Вполне успешно для монтажа систем водяного теплого пола применяют трубы из:

  • меди;
  • гофрированной стали;
  • металлопластика;
  • полипропилена;
  • полиэтилена.
Читайте также  Тепловой конвектор гибкий

Медные трубы — это высококлассный и проверенный временем вариант. Однако их стоимость высока сама по себе. Кроме того, понадобится потратиться на полимерную оболочку, необходимую при монтаже меди в стяжку, и на специальные латунные фитинги.

С гофрированной сталью работать проще и расход ее будет несколько меньше, при практически таких же эксплуатационных характеристиках, как у меди. Но и цена материала будет такой же высокой.

Металлопластиковые конструкции относительно «молоды» и прекрасно выполняют роль транспортной магистрали при монтаже теплого пола. Однако со временем внутри резьбовых фитингов может откладываться накипь. Кроме того, при монтаже велика вероятность разреза трубы.

У полипропиленовых труб, при таких достоинствах, как приемлемая цена, простой монтаж и невысокий физический вес, «хромают» показатели линейного расширения при нагревании. При монтаже в бетонную стяжку их необходимо армировать стекловолокном и алюминием.

Трубы из сшитого полиэтилена считаются самым современным выбором для монтажа теплого пола, поскольку их характеристики соответствуют технологическим требованиям в самой полной мере. Из недостатков можно отметить недостаточную гибкость материала, из-за которой трубы плохо держат форму во время монтажа.

В состав трубы из сшитого полиэтилена с антидиффузной защитой входит специальный слой алюминия, который препятствует проникновению кислорода или водяного пара через стенки трубы

Широкий выбор труб, фитингов, коллекторов и других видов продукции для инженерных сетей предлагает бренд STOUT.

Компания Stout предлагает широкий ассортимент труб

Металлопластиковая труба STOUT разработана специально для российских условий эксплуатации

Это интересно: Как выбрать поликарбонат для теплицы: вся суть

Способы

Все методики, которыми сгибают трубу ПНД, основаны на свойствах этого полимера: под воздействием высокой температуры он размягчается, и материалу задается необходимая форма.

Способы делятся на:

  • промышленный;
  • внепроизводственный ( в домашних условиях).

Промышленный или производственный

Трубы сгибают с помощью формовочной машины. Аппарат имеет большие габариты, поэтому данный вид работы выполняется в цехе на производстве, руководствуясь технологией с точными расчетами. Она делится на два способа:

  • Обкатка роликом вокруг шаблона без наполнителя.
  • Накручиванием на шаблон с оправкой внутри.

Внепроизводственный

Гнуть трубы ПНД можно и в домашних условиях. Эти методы можно поделить на виды. В зависимости от того, с помощью каких инструментов будет выполняться сгибание.

С помощью строительного фена

Метод наиболее безопасен и эффективен для выполнения своими руками. Желательно иметь фен с точной регулировкой температуры. Принцип действия: разогрев участка для сгиба.

С помощью газовой горелки

Ручная газовая горелка может заменить строительный фен. Принцип действия аналогичен, но этот вариант уступает предыдущему. Так как надо иметь определенный опыт, потому что:

  • если пламя газовой горелки находится далеко от поверхности, то заданное место может не прогреться до необходимой температуры, и при сгибе изделие просто поломается;
  • если газовая горелка расположена слишком близко, то от пламени произойдет воспламенение полимера, что тоже приведет к порче изделия.

Однако, есть и преимущества:

  • доступность в местах, где нет электропитания;
  • стоимость газового баллона в 220 мл обойдется в десять раз дешевле покупки строительного электрического фена.

Обработка горячей водой

Если же у Вас дома нет строительного фена или ручной газовой горелки, и объем работы небольшой, то на помощь придут несколько литров горячей воды.

Но доступен этот способ только в том случае, если диаметр не превышает 50 мм. Способ используется даже на производствах. Там применяются большие ванны, в которых жидкость нагревается до +135оС. Принцип действия: горячая вода нагревает необходимый участок для последующего сгиба.

Выводы и полезное видео по теме

Правила расчета отопительной напольной системы приведены в видео:

После укладки трубы важно провести ее испытание перед выполнением дальнейших монтажных работ. Об этом в видео:. Домашние умельцы часто допускают ошибки при сборке теплого пола

Основные проблемы монтажа полиэтиленовых труб освещены в видео ролике:

Домашние умельцы часто допускают ошибки при сборке теплого пола. Основные проблемы монтажа полиэтиленовых труб освещены в видео ролике:

Правильно выбранный и установленный теплый пол без особых затрат сделает жилье теплым и комфортным. Технология устройства напольного контура отопления из ПЭ-труб проста и может использоваться не только профессиональными строителями, но и рядовыми обывателями. При соблюдении всех правил и рекомендаций система будет исправно служить вам длительное время.

А вам приходилось укладывать полиэтиленовые трубы при устройстве теплого пола? Возможно, вам известны технологические нюансы, не отмеченные в статье? Пишите, пожалуйста,0 , задавайте вопросы, размещайте фото по теме в расположенном ниже блоке.

Как правильно согнуть полипропиленовую трубу в домашних условиях и избежать деформации

Полипропиленовые трубы — самый распространенный материал, который часто используют при установке системы отопления. Труба из полипропилена способна выдержать воздействие теплоносителей высоких температур и хорошо переносит давление в несколько атмосфер внутри трубопровода.

Недостаток ППР труб в том, что они продаются прямыми, и для создания систем сложных конфигураций часто бывает нужна труба с определенным изгибом, который приходится делать вручную.

Это важно! Производители ППР труб не рекомендуют создавать изгибы и менять конфигурацию своей продукции. Таким образом есть риск изменить свойства материалов и сделать конструкцию ненадежной.

Однако опытные мастера ремонта часто прибегают к сгибанию труб, и это не вызывает проблем с деформацией или нарушением прочности.

Зачем делать изгиб труб

Во время построения сложной системы отопления приходится создавать конструкции сложных конфигураций.

Допустим, в многоквартирных домах, где в каждой комнате есть отдельный стояк и один радиатор, система очень простая. Одна труба идет от стояка к радиатору, вторая — обратно. Иногда их соединяют третьей. В этом случае изгиб делать не имеет смысла. Достаточно поставить правильные соединительные элементы в количестве 4 — 6 штук.

Иначе обстоят дела в частном доме, где отопление приходится прокладывать с нуля, начиная от котла и выводить трубы из подвальных помещений наверх, во все комнаты. Иногда бывает сложно в этом случае построить прямолинейную систему, которая будет лишена поворотов и смены высоты прокладывания труб. Можно во всех местах сгибов устанавливать две различные трубы, соединенные специальной муфтой, но это трудоемко, затратно и менее эффективно.

Еще одна большая область применения согнутых полипропиленовых труб — это система теплый пол. Дело в том, что трубы в этом случае кладут по заранее намеченной схеме, напоминающей по форме трубчатый электронагреватель стиральной машины или “змеевик” в ванной комнате.

Такая система имеет множество мест изгиба трубы. В этом случае необходимо либо в каждом месте изгиба устанавливать соединители, что очень непрактично, либо приобретать специальные гибкие трубы. Заменить последние можно с помощью сгибания полипропиленовой трубы.

Процедура решает как технические, так и экономические проблемы. Путем сгибания можно значительно уменьшить количество соединительный. При этом не нужно постоянно разрезать и соединять трубы, можно сэкономить на лишних деталях.

Кроме того, муфта — это всегда слабое место. Именно тут чаще всего возникают протекания, коррозия и изломы. Если заменить муфту изгибом цельной трубы, есть шанс что конструкция прослужит дольше. Стоит также учитывать, что полипропиленовые стоят дешевле, чем трубы из гнущегося пластика. Согнув ППР трубу можно значительно сэкономить на системе теплых полов.

Как гнуть полипропиленовые трубы, чтобы избежать деформации

Во время процесса сгибания на полипропилен действует сразу несколько физических сил. Прежде всего, это механическая сила, которая и придает необходимый изгиб трубе. При этом по внутренней оси материал немного сжимается, а по внешней — растягивается. Такая упругая деформация легко может повредить трубу, если выполнять процедуру неправильно.

Кроме того, в большинстве случаев применяется горячий способ сгибания. При этом на полипропилен действует еще один фактор — температура. Как и любой вид пластика, ППР не всегда способен выдержать значительные температурные воздействия. Избежать деформации трубы при ее сгибании можно только путем соблюдения мер предосторожности.

Стоит прислушаться к советам специалистов, касающиеся:

  • Температуры воздействия. Следует помнить, что полипропилен плавится при температуре около 140 ͒С. При этом он становится гибким и трубу можно согнуть. Однако если значительно превысить этот показатель, труба может просто расплавиться или сломаться. Чтобы этого не произошло, температура воздействия должна быть не более 150 ͒С.
  • Длительности воздействия. Трубу необходимо прогревать до податливости, важно не упустить тот момент, когда она станет гибкой. Дальнейшее воздействие будет способствовать изменению свойств материала.
  • Равномерности прогревание. Независимо от способа нагревания, необходимо следить за тем, чтобы все ее стороны были равномерно прогреты.
  • Радиуса изгиба. Это правило, в отличие от предыдущих, касается любого способа сгибания: и горячего, и холодного. Рассчитать этот параметр легко, стоит помнить, что радиус изгиба должен превышать радиус трубы не более, чем в 8 раз. Например, если радиус трубы 5 см, то изгиб должен иметь радиус, который не превышает 40 см.
Читайте также  Переделка кондиционера в тепловой насос

Процедура достаточно сложна для выполнения. С первого раза необходимый результат может не получиться. Кроме того, при подключении согнутой трубы к системе отопления, всегда есть опасность, что она будет протекать в месте изгиба. Чтобы этого избежать, важно правильно выбрать способ сгибания.

Способы сгибания

Существует две разновидности процедуры сгибания: горячая и холодная. В первом случае на полипропилен действует фактор температуры и механическая сила.

Во втором — только механическая сила. Каждый из способов имеет свои положительные и отрицательные стороны.

Это важно! Под воздействием температуры трубу согнуть легче, следовательно, требуется меньше усилий, которые в конечном итоге могут сломать трубу. Холодный способ рекомендовано использовать только опытным мастерам.

Горячий способ

Самый простой метод горячего сгибания, который легко можно воссоздать в доме или квартире — нагревание трубы строительным феном. Такой фен можно приобрести самостоятельно или взять в аренду. Кроме того, для сгибания понадобится специальная пружинный трубогиб или изогнутый под нужным углом шаблон.

Сгибанием с помощью трубогиба проводится в несколько этапов:

  1. Трубогиб помещают внутрь нужного отрезка трубы или надевают сверху.
  2. Феном аккуратно и равномерно прогревают, делая вращательные движения для того, чтобы не перегреть какой-либо участок.
  3. Когда труба становится податливой, делают необходимый изгиб и закрепляют трубогиб в таком состоянии он будет держать под нужным углом).
  4. Дают конструкции остыть, а затем освобождают от трубогиба, когда она полностью затвердеет.

При использовании шаблона методика немного меняется. Трубу вначале нагревают до необходимой температуры, пока она не станет податливой, а затем помещают в шаблон, где она затвердевает и остывает.

Важно, чтобы внутренняя поверхность шаблона была гладкой, иначе труба повторит все его шероховатости.

Вместо строительного фена можно использовать обычную горелку. Однако такой бюджетный вариант может дорогого стоить, ведь температура горелки гораздо выше и она может просто расплавить трубу.

Существуют и другие горячие способы, например, сгибание с помощью формовочной машины, но в домашних условиях их использование нецелесообразно.

Холодный способ сгибания

При использовании этого способа не требуются никакие дополнительные приспособления или материалы. Достаточно лишь взять трубу и согнуть ее в нужном месте до необходимого угла изгиба. Для облегчения задачи можно воспользоваться трубогибом.

На самом деле, полипропиленовые трубы гнуться даже без температурных воздействий. Необходимо только приложить достаточную силу.

Стоит понимать, что в этом случае материал вместо растяжения по внешнему контуру и сжимания по внутреннему может просто надломиться в нескольких местах. Эти изломы обеспечивают мнимую эластичность и делают возможным создание изгиба, но они же могут стать причиной протекания труб.

Видео: Что будет если перегнуть трубу?

Как правильно согнуть медную трубку?

При монтаже отопительных или водяных систем достаточно часто приходится гнуть медные трубы. Они востребованы за счёт своих свойств: эластичность, коррозионная стойкость, высокая прочность. Однако важно знать, как согнуть медные трубки, поскольку при гибке они могут лопаться, деформироваться, что может приводить к невозможности их эксплуатации.

Сгибание медной трубки

Особенность работы с медными трубками

Особенности работы с трубками из меди определяются свойствами материала. Из-за высокой пластичности заготовка в месте сгиба может треснуть или потерять форму внутреннего канала. Поэтому при гибке важно повысить прочность материала по определённым методикам.

По причине высокого теплового расширения при значительных температурных колебаниях медь может деформироваться. Особенно это касается массивных труб. Метод нагрева эффективен для тонкостенных конструкций.

При выполнении гибки нужно пользоваться следующими рекомендациями:

  • опорная поверхность должна быть ровной и прочной, стойкой к термическому воздействию;
  • при изгибании труб с засыпкой песка во внутреннюю полость торцы нужно закрывать деревянными пробками, а в ходе самого процесса конструкцию периодически встряхивать;
  • чтобы предотвратить разрыв стенки, заготовку нужно прогревать и медленно деформировать;
  • недопустим перегрев конструкции, когда внутри находится песок;
  • после горячего деформирования конструкцию требуется опустить в ёмкость с холодной водой и довести до комнатной температуры;
  • после остывания убирают пробки и высыпают песок;
  • рекомендуется продуть изделие для удаления остатков мусора.

Требования стандартов к радиусу изгиба

Требования ГОСТ 617-90 определяют минимальный радиус изгиба медных труб:

  • внешний диаметр менее 1 см с минимальным углом до 20 0 ;
  • при наружном диаметре от 1,2 см — угол до 24 0 .

Способы гибки

Гибка труб выполняется при высоких температурах. Нагрев проводят при помощи газовой горелки или паяльной станции локально в месте изгибания. По достижении требуемой температуры придают нужную форму и оставляют остывать.

Изгибание медных труб выполняется следующими способами:

  • пружиной;
  • способом засыпки песка.

Подготовка к сгибанию медной трубки

С помощью пружины

Согнуть пружиной медные трубки можно так:

  • надевается пружина на трубу;
  • выполняется прогрев изделия полный или частичный;
  • после прогрева металл можно гнуть механическим способом;
  • конструкция остывает в деформированном готовом состоянии.

Прогрев следует выполнять аккуратно без перегрева. Критерием достаточного нагрева является частичное потемнение металла.

После окончания процедуры изгибания пружину не снимают, а дают остыть конструкции вместе с ней. Благодаря жёсткости стальной пружины медь не подвергается термическому деформированию при остывании.

С помощью песка

Загнуть медную трубку также можно при помощи песка. При деформировании изделия она сохраняет своё внутреннее сечение. В случае превышения усилия при изгибе металл не трескается.

Пошагово метод реализуется так:

  1. Один конец изделия закупоривается деревянной заглушкой.
  2. Внутрь полости насыпается сухой очищенный песок.
  3. С другого конца изделия устанавливается вторая заглушка, чтобы предотвратить высыпание песка.
  4. В месте изгиба металл нагревается горелкой.
  5. Один из концов фиксируется на прочной ровной опоре (рабочем столе, верстаке).
  6. Второй конец загибается под заданным углом.

С помощью трубогиба

Согнуть медную трубу при помощи трубогиба весьма просто, так как гнуть можно по заданному диаметру, длине. За счёт фиксации одного конца и перемещения другого можно добиться высокой точности. Место сгиба находится в стабильном положении, деформация проходит контролируемо.

Все инструменты для гибки подразделяются на следующие классы:

  1. Ручные, работающие по принципу рычажного механизма. Предельный угол, на который можно согнуть трубку, составляет 180 0 .
  2. Гидравлические, принцип работы основан на гидравлическом усилии, передаваемом трубе. Обеспечивают гибку на любые углы, высокую производительность.
  3. Электрические, массивные станки, используются в промышленности. Используются для серийного производства трубных конструкций.

Эксплуатация конкретного оборудования выполняется в соответствии с инструкциями от производителя. Изгибание трубок осуществляется в зависимости от технических характеристик.

Трубогиб

Как согнуть трубу в спираль?

Согнуть медную трубку в спираль можно так:

  • изделие одним концом закрепляют на опоры;
  • выполнить обжиг заготовки;
  • во внутреннюю полость насыпают мелкий очищенный речной песок;
  • прокаливают горелкой место изгиба;
  • при помощи киянки и паяльной лампы придают нужную форму;
  • в закреплённом состоянии оставляют трубу до момента остывания.

При работе с раскалённым металлом требуется использовать индивидуальные средства защиты, чтобы исключить ожоги. Нужно одевать плотную одежду и защищать открытые участки тела перчатками.

Вместо речного песка можно использовать лёд. Если воспользоваться цилиндрической опорой, то спираль получится практически идеальной формы.

Оборудование

Для выполнения работ потребуется подготовить оборудование:

  • киянку;
  • горелку;
  • трубогиб;
  • молоток;
  • две опоры;
  • пружину.

Дополнительно к инструментам потребуются также песок или лёд.

Как своими руками изготовить эффективный трубогиб?

Для изготовления трубогиба потребуются следующие материалы:

  • стальные ролики 2 шт;
  • стальная труба с диаметром более ¾ и длиной более 1,5 м;
  • стальной лист толщиной 5 мм для изготовления полосок;
  • 2 болта М20;
  • стальная пластина толщиной 3 мм.

Для сборки нужен следующий инструмент:

  • сварочный аппарат;
  • тиски;
  • молоток;
  • линейка;
  • наждачная бумага.
  1. Проверяется совпадение отверстий в роликах.
  2. В планках просверливается по 2 отверстия диаметром 20 мм на расстоянии 80 мм.
  3. В центральной части 5 мм плиты сверлят отверстие диаметром 20 мм, вставляют болт, приваривают так, чтобы он не выступал с противоположной стороны.
  4. Создается П-образная деталь из пластин 3 мм, по центру высверливается отверстие, вставляется болт и крепится ролик.
  5. Из пластин изготавливается Y-образная деталь, которая должна крепиться с открытой стороны детали.
  6. Приваривают к конструкции трубу и опорную планку. Расстояние между планкой и осью должно быть таким, чтобы было достаточно места для установки ролика.
  7. На несущую плиту крепят планку размерами 15х6 см.
  8. В Y-образную деталь крепят ролик. На несущий болт крепят основную часть трубогиба и фиксируют гайкой.

Как согнуть медную трубу в домашних условиях?

Согнуть медное изделие с круглым или квадратным сечением без трубогиба можно следующим способом:

  1. Обжечь конструкцию в месте изгиба горелкой.
  2. Дождаться, пока изделие остынет до комнатной температуры.
  3. Закрыть плотно конструкцию с одного торца.
  4. Залить внутрь воду.
  5. Закрыть изделие пробкой с другого торца.
  6. Закрепить трубу, согнуть её вручную или при помощи киянки.

Применение в качестве основы цилиндрической опоры позволит получить практически идеальную форму трубки после деформирования. Изгибание требуется проводить аккуратно, чтобы не лопнули стенки.