Несколько вру на один контур заземления заземляющий проводник

Тема: Достаточно ли одну ГЗШ присоединить к контуру заземления?

Опции темы
  • Версия для печати
  • Отправить по электронной почте…
  • Подписаться на эту тему…
  • Отображение
    • Линейный вид
    • Комбинированный вид
    • Древовидный вид
  • Достаточно ли одну ГЗШ присоединить к контуру заземления?

    Вопрос по заземлению: имеется здание с тремя ГРЩ, вводы независимые. Согласно ПУЭ п. 1.7.120 ГЗШ должна быть выполнена для каждого ГРЩ и все три необходимо соединить между собой проводником уравнивания потенциалов. Вопрос: достаточно ли одну ГЗШ присоединить к контуру заземления или необходимо от каждой ГЗШ тянуть проводник заземления до контура?

    Для каждого ввода требуется выполнить основную систему уравнивания потенциалов. ПУЭ, 7.1.87. На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:
    ♦ основной (магистральный) защитный проводник;
    ♦ основной (магистральный) заземляющий проводник или основной заземляющий зажим;
    ♦ стальные трубы коммуникаций зданий и между зданиями;
    ♦ металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание.
    Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.

    К каждой ГЗШ требуется проложить заземляющий проводник от контура заземления.

    Собираюсь делать контур заземления, нужно и можно мне по мимо основного контура еще приварится к вводу газовой трубы в дом, газовики что на это скажут?

    Газопровод не может быть использован как контур заземления. Вы обязаны на вводе сделать основную систему уравнивания потенциалов и присоединить к главной заземляющей шине трубу газопровода.
    ПУЭ, п. 7.1.87. На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:
    — основной (магистральный) защитный проводник;
    — основной (магистральный) заземляющий проводник или основной заземляющий зажим;
    — стальные трубы коммуникаций зданий и между зданиями;
    — металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание.
    Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.
    п. 1.7.82. Основная система уравнивания потенциалов в в электроустановках до 1 кВ должна соединять между собой следующие проводящие части (рис. 1.7.7):
    1) нулевой защитный РЕ- или PEN-проводник питающей линии в системе TN;
    2) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и ТТ;
    3) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание (если есть заземлитель);
    4) металлические трубы коммуникаций, входящих в здание: горячего и холодного водоснабжения, канализации, отопления, газоснабжения и т.п.
    Если трубопровод газоснабжения имеет изолирующую вставку на вводе в здание, к основной системе уравнивания потенциалов присоединяется только та часть трубопровода, которая находится относительно изолирующей вставки со стороны здания;

    5) металлические части каркаса здания;
    6) металлические части централизованных систем вентиляции и кондиционирования. При наличии децентрализованных систем вентиляции и кондиционирования металлические воздуховоды следует присоединять к шине РЕ щитов питания вентиляторов и кондиционеров;
    7) заземляющее устройство системы молниезащиты 2-й и 3-й категорий;
    8) заземляющий проводник функционального (рабочего) заземления, если такое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;
    9) металлические оболочки телекоммуникационных кабелей.
    Проводящие части, входящие в здание извне, должны быть соединены как можно ближе к точке их ввода в здание.
    Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине (см. 1.7.119-1.7.120) при помощи проводников системы уравнивания потенциалов.

    Объединение заземления для молниезащиты с заземлением для электрических установок

    Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». Как раз 2-я и 3-я категории являются наиболее распространёнными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.

    Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?

    Зачем нужно объединение контуров заземления?

    При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдёт её сама». Вот почему электрическое объединение заземлений обязательно.

    По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путём соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жёсткие шины и т.п.).

    Одно общее или отдельные заземляющие устройства?

    К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространённый вариант заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединённых металлической полосой, заглублённой не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.

    Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или ещё меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещённые на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.

    Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле. Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину. А, если такое соединение не предусматривается руководством по эксплуатации аппаратуры, то применяются специальные меры по исключению одновременного прикосновения людей к указанной аппаратуре и металлическим частям здания.

    Электрическое соединение заземлений

    Схема с несколькими заземлениями, соединёнными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.

    Читайте также  Как правильно уложить гипсокартон на стены?

    Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.

    Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения.

    Выводы

    Рекомендация ПУЭ об электрическом соединении всех контуров заземлений в здании является обоснованной и при правильной реализации не только не создает опасность для сложной электронной аппаратуры, а, наоборот, защищает её. В том случае, если аппаратура чувствительна к помехам от молний и требует собственного отдельного заземлителя, можно установить отдельное технологическое заземление в соответствии с прилагаемому к аппаратуре руководству. Система уравнивания потенциалов, объединяющая разрозненные контура заземлений, должна обеспечить надёжное электрическое соединение и во многом определяет общий уровень электробезопасности на объекте, поэтому ей должно быть уделено особое внимание.

    Несколько вру на один контур заземления заземляющий проводник

    • Главная
    • Электропроводка
    • Заземление

    Материалы для контура заземления

    Чтобы заземление частного дома было эффективным, его сопротивление не должно быть больше 4 Ом. Для этого необходимо обеспечить хороший контакт заземлителей с грунтом. Проблема в том, что измерить сопротивление заземления можно только специальным прибором. Эту процедуру проводят при вводе системы в эксплуатацию. Если параметры хуже, акт не подписывают. Потому, делая заземление частного дома или дачи своими руками, старайтесь строго придерживаться технологии.

    Пример заземления для частного дома

    Параметры и материалы штырей

    Штыри заземления обычно делают из черного металла. Чаще всего используется пруток сечением 16 мм и больше или уголок параметрами 50*50*5 мм (полочка 5 см, толщина металла — 5 мм)

    Обратите внимание, что арматуру использовать нельзя — ее поверхность каленая, что изменяет распределение токов, к тому же в земле она быстро ржавеет и разрушается. Нужен именно пруток, не арматура

    Возможные профили электродов

    Еще вариант для засушливых регионов — толстостенные металлические трубы. Их нижнюю часть сплющивают в виде конуса, в нижней трети сверлят отверстия. Под их установку сверлят лунки требуемой длины, так как забить их не получится. При пересыхании грунтов и ухудшении параметров заземления, в трубы заливают соляной раствор — для восстановления рассеивающей способности грунтов.

    Длинна стержней заземления — 2,5-3 метра. Этого достаточно для большинства регионов. Конкретнее есть два требования:

      стержень контура заземления должен заходить в грунт ниже уровня промерзания не менее чем на 60 см (лучше — 80-100 см);

    в засушливых регионах как минимум 1/3 заземлителя должна находиться во влажных грунтах, потому еще надо ориентироваться на уровень расположения грунтовых вод — при низком их расположении могут понадобиться более длинные стержни.

    Конкретные параметры заземления можно высчитать, но требуются результаты геологического исследования. Если у вас таковые имеются, можно заказать расчет в специализированно организации.

    Из чего делать металлосвязь и как соединять со штырями

    Все штыри контура соединяются между собой металлосвязью. Ее можно сделать из:

    • медного провода сечением на менее 10 мм2;
    • алюминиевого провода сечением не менее 16 мм2
    • стальной проводник сечением не менее 100 мм2 (обычно полоса 25*5 мм) .

    Чаще всего штыри между собой соединяются при помощи стальной полосы. Ее приваривают к уголкам или оголовкам прутка

    Очень важно чтобы качество сварного шва было высоким — от этого зависит пройдет ли ваше заземление испытание или нет (будет ли оно соответствовать требованиям — сопротивление меньше 4 Ом)

    Параметры, которых необходимо добиться при самостоятельном изготовлении контура заземления

    При использовании алюминиевого или медного провода к штырям приваривают болт большого сечения, к нему уже крепят провода. Провод можно накрутить на болт и прижать шайбой с гайкой, можно провод оконечить разъемом подходящего размера. Главная задача та же — обеспечить хороший контакт. Потому не забудьте зачистить болт и провод до чистого металла (можно обработать шкуркой) и хорошо поджать — для хорошего контакта.

    Зависимость сопротивления заземления от грунта

    Одним из важнейших факторов, влияющих на сопротивления заземления это является сам грунт

    Второй важной составляющей является влажность этого грунта или глубина залегания грунтовых вод. Если монтируемый штырь входит в грунтовые воды, то это резко снижает его сопротивление

    А значит заземление будет работать лучше. Не стоит, наверное, лишний раз доказывать, что заземление с покрытием, при таких условиях, прослужат намного дольше чем уголок или арматура. Не говоря уже о песчаном грунте. У нас было множество примеров, когда выходили из строя газовые котлы, подключенные к традиционному треугольнику из уголков, смонтированных в песчаный грунт и не отвечающих требованиям эксплуатации. В таких случаях только с помощью глубинных штырей, за счет увеличение площади соприкосновения или попаданием в грунтовые воды, удавалось решить проблему.
    Ниже приведем несколько фотографий с замерами сопротивления заземления после монтажа очередного 1,5 метрового штыря, путем наращивания и заглубления.

    Правила прокладки

    Прежде чем приступать к монтажу, требуется ознакомиться с правилами, которые предъявляются к прокладке РЕ:

    • В линии должны отсутствовать устройства, которые могут стать причиной разъединения, нарушения целостности цепи, например, удаляемые вставки, выключатели, автоматы защиты и предохранители.
    • Все оборудование и токоведущие части коммутируются с защитным заземлением напрямую.
    • Запрещено соединение нескольких электрических приборов по принципу шлейфа.
    • На распределительной шине РЕ выделяется отдельная клемма (зажим). Запрещается к одной клемме одновременно подсоединять нулевой защитный и рабочий провод.
    • Если оборудование защитного отключения УЗО установлено в распределительном щите, N и защитный провод не должны иметь контактов на одной линии. Если пренебречь этим правилом, у УЗО будет множество ложных срабатываний.
    • У рабочих проводов площадь сечения должна быть больше, чем сечение защитного заземления.
    • Нулевая защитная жила должна быть проложена около рабочих проводов.
    • Для заземления нельзя использовать предметы и коммуникации, не предназначенные для этого. Чаще всего в данном случае не по назначению используется арматура в стенах, трубопровод и батареи отопления.
    • Запрещается подключать РЕ к независимым шинам заземления, если такие в электрической цепи предусмотрены.

    Штыревое заземление против уголков

    В последнее время все большую популярность набирают комплекты штыревого заземления, которые пришли на смену контуру из уголков или арматуры. Давайте попробуем разобраться в чем разница?
    Но. Мы живем в стране, где большая часть времени занимает холода и морозы. И чаще всего именно в морозы наиболее актуально использование электричества и газовых котлов. Грунт в морозы у нас промерзает на 1-1,5 метра. А как известно, мерзлый грунт резко снижает свои токопроводящие свойства. Таким образом, 3 штыря по 2 метра, теряют своей рабочей поверхности не менее половины. И зимой мы получаем вместо 6 метров рабочей поверхности — 3. А то и еще меньше.
    В случае же с глубинным штырем, мы получаем те же самые 6 метров, но смонтированные в глубь грунта. Таким образом у нас зимой перестает работать только верхняя часть 1-1,5 метра. То же, что находится глубже, продолжает успешно работать в качестве заземления электропроводки или газового котла. Т.е. порядка 5-4,5 метров.

    Назначение проводников

    Применение нулевых проводников в электрощитке

    Нулевой рабочий проводник имеет еще одно название – проводник сети. По нему протекает нагрузочный ток. На схеме он обозначается латинской буквой «N».

    Читайте также  Какой нагреватель для воды лучше для квартиры?

    Основная задача нулевого защитного проводника – обеспечивать безопасность. В системах с нулевым выводом глухозаземленного трансформатора он коммутирует токопроводящие части электрических приемников и нулевую точку питающего трансформатора. В аварийных или нештатных ситуациях они оказываются под ударом.

    Защите от косвенного прикосновения подлежат следующие электрические элементы (согласно ПУЭ 1.7.76):

    корпуса, изготовленные из металла, портативных и передвижных устройств;

  • металлические конструкции трансформаторов, электрических машин и осветительных приборов;
  • металлические корпуса различных конструкций с электрооборудованием, муфт кабелей, лотков и различных распределительных приборов;
  • стальные корпуса этажных, квартирных щитков, распределительных щитков.
  • В качестве защиты используется коммутация этих устройств с глухозаземленной нейтралью в системах ТN или ТТ, IТ. Последние две с заземлением.

    Монтаж штыревого заземления для газового котла, на участке с суглинистой почвой

    Напомним. Что для газового котла, необходимое сопротивление заземления (контура заземления) не должно превышать 10 Ом. в сухую погоду.
    На нижеприведенных снимках, монтаж производился в сырую погоду, во время дождя. Поэтому необходимо было выйти на показания сопротивления не хуже 7-8 Ом.
    Первый штырь, показал неплохое сопротивление, в пределах 30 Ом, что дало надежду на получение заданных значений. Второй штырь, вероятнее всего, вошел в грунтовые воды и сопротивление резко упало до необходимых значений

    Однако помня, что зимой почва промерзает на 1-1,5 метра, а так же что летом возможно грунтовые воды опустятся глубже, было решено смонтировать стандартный комплект из 4-х штырей, на глубину 6 метров.
    Обратите внимание, что последние показания в 5,1 Ом, хуже предыдущих в 4,8 Ом. Это происходит потому, что во время монтажа, верхняя часть грунта разбивается и образуется небольшая воронка, в которой штырь не соприкасается с землей

    По окончании монтажа, после того как штырь будет засыпан землей, а так же по прошествии некоторого времени, после осадки земли, показания вернутся к наилучшим значениям.

    Обоснование проектных решений

    Чтобы не возникало сложностей с согласованием и сдачей проекта, нужно быть внимательным при получении ТЗ на проектирование. Если на проектируемом объекте применяется чувствительное к воздействию помех оборудование, то нужно сразу же запросить у заказчика или у производителя паспорта на данное оборудование, где должна быть обоснована необходимость устройства независимого заземлителя и указано требуемое сопротивление функционального заземления. Паспорта (сертификаты) на применяемое оборудование прилагаются к проекту и служат обоснованием проектных решений на всех этапах согласования проекта.

    Независимое функциональное заземление выполняется по схеме на рис. 4.

    Если независимый функциональный заземлитель производителем оборудования не предусматривается, то в этом случае функциональное заземление должно быть выполнено по одной из схем (рис. 2, 3) с учетом требований к электромагнитной совместимости. Изолированная шина функционального заземления в этом случае может быть установлена в отдельном ящике заземления, исключающем одновременное прикосновение к частям, которые могут оказаться под опасной разностью потенциалов при повреждении изоляции.

    Пример такого ящика функционального заземления показан на рис. 6.

    Штыревое заземление

    Таким образом, кроме того что электроды стали использовать с обработкой более устойчивых к коррозии покрытий. Вначале с оцинковкой и впоследствии с медным покрытием.
    Но тут возник вопрос с наращиванием. При использовании электролитического покрытия, на резьбовых штырях, возникали пузырьки в канавке резьбы и покрытие получалось неравномерным. И важная часть штырей — место их соединения, в первую очередь подвергалось воздействие коррозии.
    Что бы избежать этого, стали использовать варианты самопрессующихся штырей. Т.е. полностью избежать резьбового соединения. Или же резьбу стали наносить «накатным» способом. Т.е. не срезая металл, а выдавливая резьбу специальным прессом, уже после покрытия его защитным слоем. В этом случае резьба сохраняла равномерное покрытие.

    Про заземление и зануление для «чайников»

    Мой горький опыт электрика позволяет мне утверждать: Если у Вас «заземление» сделано как надо – то есть в щитке есть место присоединения «заземляющих» проводников, и все вилки и розетки имеют «заземляющие» контакты – я вам завидую, и вам не о чем беспокоиться.

    Правила подключения заземления

    В чем же состоит проблема, почему нельзя подключать провод заземления на трубы отопления или водоснабжения?

    Реально в городских условиях блуждающие токи и пр. мешающие факторы столь велики, что на батарее отопления может оказаться что угодно. Однако основная проблема, в том, что ток срабатывания автоматов защиты достаточно велик. Соответственно один из вариантов возможной аварии — пробой накоротко фазы на корпус с током утечки как раз где-то на границе срабатывания автомата, то есть, в лучшем случае 16 ампер. Итого, делим 220в на 16А – получаем 15 ом. Всего каких-то тридцать метров труб, и получите 15 ом. И потек ток куда-то, в сторону не пиленого леса. Но это уже не важно. Важно то, что в соседней квартире (до которой 3 метра, а не 30, напряжение на кране почти те же 220.), а вот на, скажем, канализационной трубе – реальный ноль, или около того.

    А теперь вопрос – что будет с соседом, если он, сидя в ванной (соединившись с канализацией посредством открывания пробки) коснется крана? Угадали?

    Приз — тюрьма. По статье о нарушении правил электробезопасности повлекшем жертвы.

    Не надо забывать, что нельзя делать имитацию схемы «заземления» , соединяя в евророзетке «нулевой рабочий» и «нулевой защитный» проводники, как иногда практикуют некоторые «умельцы». Такая замена крайне опасна. Не редки случаи отгорания «рабочего нуля» в щите. После этого на корпусе Вашего холодильника, компьютера и т.д. очень прочно размещается 220В.

    Последствия будут примерно такими же, как и с соседом, с той разницей, что за это ни кто ответственности нести не будет, кроме того, кто сделал такое соединение. А как показывает практика, это делают сами же хозяева, т.к. считают себя достаточными специалистами, чтобы не вызывать электриков.

    «Заземление» и «зануление»

    Одним из вариантов «заземления» является «зануление». Но только не как в случае описанном выше. Дело в том, что на корпусе распределительного щита, на Вашем этаже имеется нулевой потенциал, а если точнее, нулевой провод, проходящий через этот самый щиток, просто-напросто имеет контакт с корпусом щита посредством болтового соединения. Нулевые проводники с расположенных на этом этаже квартир, тоже присоединяются к корпусу щита. Давайте рассмотрим этот момент поподробнее. Что мы видим, каждый из этих концов заведен под свой болт (на практике правда часто встречается по парное соединение этих концов). Вот как раз туда и надо подсоединять наш новоиспеченный проводник, который в последствии будет называться «заземлением».

    В этой ситуации тоже есть свои нюансы. Что мешает «нулю» отгореть на входе в дом. Собственно говоря, ни чего. Остается лишь надеяться, что домов в городе меньше чем квартир, а значит и процент возникновения такой проблемы значительно меньше. Но это опять же русский «авось», который проблему не решает.

    Единственно правильное решение, в этой ситуации. Взять металлический уголок 40х40 или 50х50, длинной метра 3, забить его в землю, чтобы за него не запинались, а именно, копаем яму на два штыка лопаты в глубину и максимально забиваем туда наш уголок, а от него провести провод ПВ-3 (гибкий, многожильный), сечением не менее 6 мм. кв. до, Вашего распределительного щита.

    В идеале «контур заземления» должен состоять из 3х — 4х уголков, которые свариваются металлической полосой той же ширины. Расстояние между уголками должно составлять 2 м.

    Только не надо сверлить в земле дыру метровым буром и опускать туда штырь. Это не правильно. Да и КПД такого заземления близко к нулю.

    Но, как и в любом способе здесь есть свои минусы. Вам, конечно, повезло, если Вы живете в частном доме, или хотя бы, на первом этаже. А как быть тем, кто живет этаже на 7-8? Запастись 30-ти метровым проводом?

    Так как же найти выход из создавшейся ситуации? Боюсь, что ответ на этот вопрос Вам не дадут даже самые опытные электромонтажники.

    Что требуется для разводки по дому

    Для разводки по дому Вам понадобится медный провод заземления, соответствующей длины, и сечением не менее 1,5 мм. кв. и, конечно, розетка с «заземляющим» контактом. Короб, плинтус, скоба — дело эстетики. Идеальный вариант, это когда Вы делаете ремонт. В этом случае я рекомендую выбрать кабель с тремя жилами в двойной изоляции, лучше ВВГ. Один конец провода заводится под свободный болт шины распределительного щита, соединенной с корпусом щита, а второй — на «заземляющий» контакт розетки. При наличии в щите УЗО заземляющий проводник не должен нигде на линии иметь контакта с N проводником (в противном случае будет срабатывать УЗО).

    Читайте также  Как самому покрасить потолок водоэмульсионной краской?

    Не надо так же забывать, что «земля» не имеет права разрываться, посредством каких либо выключателей.

    Как выбрать главную заземляющую шину — сечение, медь или сталь, подключение.

    Как мы все знаем, напряжение – это разность потенциалов. Если потенциалы равны, то и напряжения между этими точками нет, а значит и током вас здесь не ударит.

    С этой целью в зданиях и делают систему уравнивания потенциалов (СУП). Она может быть основной (ОСУП) и дополнительной (ДСУП).

    Прежде чем предпринимать подобное, необходимо уточнить в управляющей компании, охвачен ли весь дом ОСУП или нет. Вот наглядная картина того, что может происходить с трубами в многоэтажках, при отсутствии общего заземления и уравнивания потенциалов.

    Как правило, в новостройках проблем со всем этим нет, и ДСУП является обязательной. А вот в старом жилом фонде ОСУП отсутствует. Поэтому в таких случаях никакой самодеятельности!

    Иначе поубиваете соседей при первой утечке тока или повреждении изоляции.

    Основная система уравнивания потенциалов соединяет между собой главные инженерные коммуникации на вводе в здание и другие проводящие части оборудования.

    Система должна отвечать требованиям двух нормативных документов:

      ПУЭ Глава 1.7 “Заземление и защитные меры безопасности”
      Технический циркуляр №6/2004 “О выполнении основной системы уравнивания потенциалов на вводе в здание” — скачать

    Циркуляр был выпущен для разъяснения некоторых положений и рекомендаций ПУЭ, дабы согласовать эти рекомендации с требованием ГОСТ Р51321.1-2000 и ГОСТ Р51732-2001.
    Разъяснений некоторые рекомендации ПУЭ действительно требуют, поскольку большинство их почему-то трактуют по разному.

    Основой ОСУП является главная заземляющая шина – ГЗШ. Какой она должна быть и из какого материала выполнена?

    В ПУЭ 1.7.119 говорится о том, что функцию ГЗШ может выполнять РЕ шина внутри распределительного устройства. Зачастую так и делается.

    А если ГЗШ вынесена наружу щитовой, отдельно от ВРУ и смонтирована на стене, каких правил при выборе и расчетах здесь придерживаться?

    Сначала определимся по материалу изготовления. Пункт 8 циркуляра говорит о том, что отдельно установленную ГЗШ рекомендуется делать из стали.

    При этом ПУЭ утверждает обратное, что ГЗШ в первую очередь должна быть медной.

    Алюминий при этом категорический запрещен!

    Кому же в этой ситуации верить и что в конечном итоге выбрать, сталь или медь?

    Выбор всегда остается за вами, но опытные профессиональные электромонтеры все же предпочитают медь. Объясняется это тем, что инспекторы энергонадзора при проверках, охотнее подписывают все бумаги при наличии именно медной ГЗШ.

    Лишних вопросов и жарких споров не возникает.

    Главная заземляющая шина должна соединять между собой такие элементы как:

      нулевой защитный проводник питающей линии
      проводник, присоединенный к заземляющему устройству повторного заземления

    Металлический уголок или полосу, которые закапывают в землю на улице или в подвале дома.

      стальные трубы всех коммуникаций на вводе в здание (водопровод, канализация)


      металлические элементы каркаса здания
      трубы, кожуха, воздуховоды систем вентиляции и кондиционирования
      проводник рабочего заземления

    А теперь главный вопрос – какого же сечения должна быть заземляющая шина? От чего это зависит, где ее установить и как подключить?

    Опять обратимся к документам. ПУЭ говорит, что шина установленная в щитовой, то есть там, где есть доступ только для специально обученного персонала может быть:

      открытой – без каких-либо шкафов
      должна предусматривать возможность индивидуального присоединения всех проводников

    То есть, под один болт разрешается сажать не более одного проводника или наконечника.

    В то же самое время циркуляр говорит немного иначе. Согласно ему, сечение ГЗШ выбирается по следующей таблице:

    Как видите, здесь выбор делается не исходя из сечения PEN питающего кабеля, а в расчете на фазную жилу!

    Все мы знаем, что Pen проводник может быть как равен фазному, так и иметь меньший размер. Например, если у вас кабель от 35мм2 и более, то вы имеете полное право для PEN взять сечение в половину меньше фазного.

    Хотя чаще всего питающий кабель от подстанции приходит с одинаковыми жилами (4*120мм2, 4*150мм2).

    Получается, что если у вас кабель слишком толстый, то по вышеприведенной таблице вовсе не обязательно подбирать такую же большую медную шину ГЗШ. Главное, чтобы она была сечением в половину от фазной жилы.

    Но на практике следует учитывать обе ситуации. То есть, делайте так, чтобы ваша ГЗШ отвечала обоим условиям:

      не менее сечения фазного проводника
      и одновременно соответствовала PEN

    В этом случае к вам никаких претензий относительно системы заземления и уравнивания потенциалов не будет.

    Не всегда ясно, кто будет принимать готовый объект. Насколько он окажется компетентен в своей сфере. Если же делаете, что называется для себя, то выбирайте наиболее оптимальный и экономный вариант, не оглядываясь на возможных инспекторов.

    При расчете сечения не забывайте про разницу материалов и марку кабеля.

    Питающие вводные кабеля, как правило, выполнены из алюминия. А шину мы решили делать из меди!

    Соответственно полезную площадь сечения алюминия, вам придется пересчитать на медь. Помогут в этом деле таблицы ПУЭ для допустимых длительных токов медных и алюминиевых проводов.

    Смотрите пропускную способность алюминиевого кабеля и уже по этому току в аналогичной таблице подбираете сечение медной шины.

    К примеру, если у вас вводной кабель АВБбШв 4*120мм2, то его PEN проводник имеет сечение 120мм2 и ток I=295А.

    По меди это соответствует сечению жилы чуть более 70мм2.

    Сообразно этому вам и следует подбирать медную шину ГЗШ. Стандартного размера 4*30мм будет более чем достаточно.

    При этом конечно нужно учитывать толщину крепежного болта. Иначе высверлив под него отверстие, у вас может не остаться полезной площади для плотного прилегания наконечника.

    В этом случае выбирайте шинку потоньше, но несколько большую по ширине.

    Дополнительные размеры медных шин:

    При желании сэкономить и выборе в качестве материала ГЗШ не меди, а стали, берите данные по токам из другой таблицы, относящейся к стальной полосе.

    Здесь как понимаете, размеры уже будут существенно отличаться.

    А вот уже готовая таблица для выбора сечения главной заземляющей шины для тех, кто не хочет ничего считать и желает сразу получить готовый результат.

    После расчета сечения и выбора габаритных размеров, необходимо проделать отверстия под болты. Для качественного результат эти отверстия в шине выдавливаются специальным прессом (при его наличии).

    Если у вас его нет, ничего страшного. Сначала высверливаете их обычным сверлом, а затем при необходимости расширяете ступенчатым.


    Сам шина крепится на поверхность стены или корпуса шкафа при помощи опорных изоляторов.

    Длину шины рассчитывайте исходя из количества присоединяемых проводников. Самый главный из них – PE или PEN проводник питающей линии.

    После изготовления не забудьте нанести соответствующие надписи, которые в зашифрованном виде будут нести всю полезную информацию по ГЗШ. Вот к примеру маркировка заводской шины:

    Как правильно ее расключить в щитовой? Чаще всего с подстанции приходит 4-х жильный кабель с совмещенным нулевым рабочим и защитным проводником. Этот PEN проводник изначально должен сажаться на нулевую защитную шину.

    И только уже с нее, делается перемычка на нулевую рабочую шину.

    Далее вводная PE шина, соединяется с главной заземляющей шиной отдельным PE проводом.

    Запомните, что допускать к монтажу систем заземления и уравнивания потенциалов следует действительно квалифицированных людей, до мелочей знающих и понимающих все нюансы и специфику работы.

    Нередко грамотный электрик подобен врачу. От его компетенции напрямую зависят жизни посторонних людей.

    Собрать шкаф ГЗШ это весьма непростое занятие и порой на его монтаж и комплектацию уходит времени не меньше, чем на сборку трехфазных распределительных щитов.

    Вот весьма неплохое и подробное видео на эту тему.