Как рассчитать толщину стены по теплопроводности?

Расчет теплопроводности стены

Чтобы определить, какой толщины возводить стену при постройке дома, нужно научиться рассчитать теплопроводность стен. Этот показатель зависит от используемых строительных материалов, климатических условий.

Нормы толщины стен в южных и северных регионах будут различаться. Если не сделать расчет до начала строительства, то может оказаться так, что в доме зимой будет холодно и сыро, а летом слишком влажно.

Чтобы этого избежать, нужно высчитать коэффициент сопротивления теплопередачи материала для постройки стен и утеплителя.

Для чего нужен расчет

Чтобы сэкономить на отоплении и способствовать созданию здорового микроклимата в помещении, нужно правильно рассчитать толщину стен и утеплительных материалов, которые будем использовать при строительстве. По закону физики, когда на улице холодно, а в помещении тепло, то через стену и кровлю тепловая энергия выходит наружу.

Если неправильно рассчитать толщину стен, сделать их слишком тонкими и не утеплить, это приведет к негативным последствиям:

  • зимой стены будут промерзать;
  • на обогрев помещения будут затрачиваться значительные средства;
  • сместиться точка росы, что приведет к образованию конденсата и влажности в помещении, заведется плесень;
  • летом в доме будет так же жарко, как и под палящим солнцем.

Чтобы избежать этих неприятностей, нужно перед началом строительства просчитать показатели теплопроводности материала и определиться, какой толщины возводить стену, и каким теплосберегающим материалом ее утеплять.

От чего зависит теплопроводность

Проводимость тепла рассчитывают исходя из количества тепловой энергии, проходящей через материал площадью 1 кв. м. и толщиной 1 м при разнице температур внутри и снаружи в один градус. Испытания проводят в течение 1 часа.

Проводимость тепловой энергии зависит от:

  • физических свойств и состава вещества;
  • химического состава;
  • условий эксплуатации.

Теплосберегающими считаются материалы с показателем менее 17 ВТ/ (м·°С).

Выполняем расчеты

Расчет толщины стен по теплопроводности является важным фактором в строительстве. При проектировании зданий архитектор рассчитывает толщину стен, но это стоит дополнительных денег. Чтобы сэкономить, можно разобраться, как рассчитать нужные показатели самостоятельно.

Скорость передачи тепла материалом зависит от компонентов, входящих в его состав. Сопротивление передачи тепла должно быть больше минимального значения, указанного в нормативном документе «Тепловая изоляция зданий».

Рассмотрим, как рассчитать толщину стены в зависимости от применяемых в строительстве материалов.

δ это толщина материала, используемого для строительства стены;

λ показатель удельной теплопроводности, рассчитывается в (м2·°С/Вт).

Когда приобретаете стройматериалы, в паспорте на них обязательно должен быть указан коэффициент теплопроводности.

Значения параметров для жилых домов указаны в СНиП II-3-79 и СНиП 23-02-2003.

Допустимые значения в зависимости от региона

Минимально допустимое значение проводимости тепла для различных регионов указано в таблице:

Показатель теплопроводности Регион
1 2 м2•°С/Вт Крым
2 2,1 м2•°С/Вт Сочи
3 2,75 м2•°С/Вт Ростов—на—Дону
4 3,14 м2•°С/Вт Москва
5 3,18 м2•°С/Вт Санкт—Петербург

У каждого материала есть свой показатель проводимости тепла. Чем он выше, тем больше тепла пропускает через себя этот материал.

Показатели теплопередачи для различных материалов

Величины проводимости тепла материалами и их плотность указаны в таблице:

Материал Величина теплопроводности Плотность
Бетонные 1,28—1,51 2300—2400
Древесина дуба 0,23—0,1 700
Хвойная древесина 0,10—0,18 500
Железобетонные плиты 1,69 2500
Кирпич с пустотами керамический 0,41—0,35 1200—1600

Теплопроводность строительных материалов зависит от их плотности и влажности. Одни и те же материалы, изготовленные разными производителями, могут отличаться по свойствам, поэтому коэффициент нужно смотреть в инструкции к ним.

Расчет многослойной конструкции

Если стену будем строить из различных материалов, допустим, кирпич, минеральная вата, штукатурка, рассчитывать величины следует для каждого отдельного материала. Зачем полученные числа суммировать.

В этом случае стоит работать по формуле:

Rобщ= R1+ R2+…+ Rn+ Ra, где:

R1-Rn- термическое сопротивление слоев разных материалов;

Ra.l– термосопротивление закрытой воздушной прослойки. Величины можно узнать в таблице 7 п. 9 в СП 23-101-2004. Прослойка воздуха не всегда предусмотрена при постройке стен. Подробнее о расчетах смотрите в этом видео:

На основании этих подсчетов можно сделать вывод о том, можно ли применять выбранные стройматериалы, и какой они должны быть толщины.

Последовательность действий

Первым делом, нужно выбрать строительные материалы, которые будете использовать для постройки дома. После этого рассчитываем термическое сопротивление стены по описанной выше схеме. Полученные величины следует сравнивать с данными таблиц. Если они совпадают или оказываются выше, хорошо.

Если величина ниже, чем в таблице, тогда нужно увеличить толщину утеплителя или стены, и снова выполнить подсчет. Если в конструкции присутствует воздушная прослойка, которая вентилируется наружным воздухом, тогда в учет не следует брать слои, находящиеся между воздушной камерой и улицей.

Как выполнить подсчеты на онлайн калькуляторе

Чтобы получить нужные величины, стоит ввести в онлайн калькулятор регион, в котором будет эксплуатироваться постройка, выбранный материал и предполагаемую толщину стен.

В сервис занесены сведения по каждой отдельной климатической зоне:

  • t воздуха;
  • средняя температура в отопительный сезон;
  • длительность отопительного сезона;
  • влажность воздуха.

Температура и влажность внутри помещения – одинаковы для каждого региона

Сведения, одинаковые для всех регионов:

  • температура и влажность воздуха внутри помещения;
  • коэффициенты теплоотдачи внутренних, наружных поверхностей;
  • перепад температур.

Чтобы дом был теплым, и в нем сохранялся здоровый микроклимат, при выполнении строительных работ нужно обязательно выполнять расчет теплопроводности материалов стены. Это несложно сделать самостоятельно или воспользовавшись онлайн калькулятором в интернете. Подробнее о том, как пользоваться калькулятором, смотрите в этом видео:

Для гарантировано точного определения толщины стен можно обратиться в строительную компанию. Ее специалисты выполнят все необходимые расчеты согласно требованиям нормативных документов.

Рассчет теплопроводности стен: таблица теплосопротивления материалов

Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.

Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.

Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.

Как рассчитать теплопроводность стены?

Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.

Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.

Теплосопротивление слоя = толщина слоя (м)
Коэффициент теплопроводности материала ( )

Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)

Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.

Единицы измерения теплосопротивления —

Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.

Пример 1

Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?

Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.

Вид кирпича Коэффициент
теплопро-
водности*,
Кирпичная кладка
на цементно-песчаном
растворе, плотность
1800 кг/м³*
Теплосопроти-
вление стены толщи-
ной 0,37 м,
Красный глиняный (плотность 1800 кг/м³) 0,56 0,70 0,53
Силикатный, белый 0,70 0,85 0,44
Керамический пустотелый (плотность 1400 кг/м³) 0,41 0,49 0,76
Керамический пустотелый (плотность 1000 кг/м³) 0,31 0,35 1,06

(*из межгосударственного стандарта ГОСТ 530-2007)

Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.

Пример 2

Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14 . Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.

Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .

Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286 . Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.

Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .

Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.

Таблица теплосопротивления материалов

Материал Толщина
материала (мм)
Расчетное теплосо-
противлениеа (м² * °С / Вт)
Брус 100 0,71
Брус 150 1,07
Кладка из красного кирпича
(плотность 1800 кг/м³)
380
(полтора кирпича)
0,53
Кладка из белого силикатного кирпича 380
(полтора кирпича)
0,44
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) 380
(полтора кирпича)
0,76
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) 380
(полтора кирпича)
1,06
Кладка из красного кирпича
(плотность 1800 кг/м³)
510
(два кирпича)
0,72
Кладка из белого силикатного кирпича 510
(два кирпича)
0,6
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) 510
(два кирпича)
1,04
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) 510
(два кирпича)
1,46
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³) 200 1,11
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³) 200 0,69
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³) 200 0,65
Теплоизоляционные материалы
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС 50 1,25
Ветрозащитные плиты Изоплат 25 0,45
Теплозащитные плиты Изоплат 12 0,27

Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4 , в Финляндии — не менее 5 (это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).

Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.

Толщина утеплителя для стен

Однослойные стены, выполненные только из обычного керамического или силикатного кирпича, не соответствуют современным нормативным параметрам по теплосбережению.

Для обеспечения требуемых теплозащитных характеристик наружных стен необходимо использовать эффективный утеплитель, установленный с наружной стороны или в толще конструкции стен.

Применение утеплителя, в многослойных конструкциях наружных стен, позволяет обеспечить требуемую теплозащиту стен во всех регионах России. За счет применения утеплителя потери тепла снижаются приблизительно в 2 раза, уменьшается расход строительных материалов, снижается масса стеновых конструкций, а в помещении создаются требуемые санитарно-гигиенические условия, благоприятные и комфортные для проживания.

Расчет теплоизоляции стен

Способность ограждений оказывать сопротивление потоку тепла, проходящему из помещения наружу, характеризуется сопротивлением теплопередачи R.

Требуемая толщина утеплителя наружной стены вычисляется по формуле:

  • αут — толщина утеплителя, м
  • R тр — нормируемое сопротивление теплопередаче наружной стены, м 2 · °С/Вт;
    (см. таблица 2)
  • δ — толщина несущей части стены, м
  • λ — коэффициент теплопроводности материала несущей части стены, Вт/(м · °С) (см. таблица 1)
  • λут— коэффициент теплопроводности утеплителя, Вт/(м · °С) (см. таблица 1)
  • r — коэффициент теплотехнической однородности
    (для штукатурного фасада r=0,9; для слоистой кладки r=0,8)

Для многослойных конструкций в формуле (1) δ/λ следует заменить на сумму

δi — толщина отдельного слоя многослойной стены;

λi — коэффициент теплопроводности материала отдельного слоя многослойной стены.

При выполнении теплотехнического расчета системы утепления с воздушным зазором термическое сопротивление наружного облицовочного слоя и воздушного зазора не учитываются.

Таблица 1

Материал Плотность,
кг/м 3
Коэффициент теплопроводности
в сухом состоянии λ, Вт/(м· о С)
Расчетные коэффициенты теплопроводности
во влажном состоянии*
λА,
Вт/(м· о С)
λБ,
Вт/(м· о С)
Бетоны
Железобетон 2500 1,69 1,92 2,04
Газобетон 300 0,07 0,08 0,09
400 0,10 0,11 0,12
500 0,12 0,14 0,15
600 0,14 0,17 0,18
700 0,17 0,20 0,21
Кладка из кирпича
Глиняного обыкновенного на цементно-песчаном растворе 1800 0,56 0,70 0,81
Силикатного на цементно-песчаном растворе 1600 0,70 0,76 0,87
Керамического пустотного плотностью 1400 кг/м 3 (брутто) на цементно-песчаном растворе 1600 0,47 0,58 0,64
Керамического пустотного плотностью 1000 кг/м 3 (брутто) на цементно-песчаном растворе 1200 0,35 0,47 0,52
Силикатного одиннадцати-пустотного на цементно-песчаном растворе 1500 0,64 0,70 0,81
Силикатного четырнадцати-пустотного на цементно-песчаном растворе 1400 0,52 0,64 0,76
Дерево
Сосна и ель поперек волокон 500 0,09 0,14 0,18
Сосна и ель вдоль волокон 500 0,18 0,29 0,35
Дуб поперек волокон 700 0,10 0,18 0,23
Дуб вдоль волокон 700 0,23 0,35 0,41
Утеплитель
Каменная вата 130-145 0,038 0,040 0,042
Пенополистирол 15-25 0,039 0,041 0,042
Экструдированный пенополистирол 25-35 0,030 0,031 0,032

*λА или λБ принимается к расчету в зависимости от города строительства (см. таблица 2).

Теплотехнический расчёт наружных стен: методика

Нормами установлены три показателя тепловой защиты здания:

а) приведенное сопротивление теплопередаче отдельных элементов ограждающих конструкций здания;

б) санитарно-гигиенический, включающий температурный перепад между температурами внутреннего воздуха и на поверхности ограждающих конструкций и температуру на внутренней поверхности выше температуры точки росы;

в) удельный расход тепловой энергии на отопление здания, позволяющий варьировать величинами теплозащитных свойств различных видов ограждающих конструкций зданий с учетом объемно-планировочных решений здания и выбора систем поддержания микроклимата для достижения нормируемого значения этого показателя.

Требования тепловой защиты здания будут выполнены, если в жилых и общественных зданиях будут соблюдены требования показателей «а» и «б» либо «б» и «в». В зданиях производственного назначения необходимо соблюдать требования показателей «а» и «б».

Если в результате расчета удельный расход тепловой энергии на отопление здания окажется меньше нормируемого значения, то допускается уменьшение сопротивления теплопередаче отдельных элементов ограждающих конструкций здания (светопрозрачных согласно примечанию 4 к таблице 4) по сравнению с нормируемым по таблице 4, но не ниже минимальных величин , определяемых по формуле (3.16) для стен групп зданий, указанных в поз.1 и 2 таблицы 4, и по формуле (3.17) — для остальных ограждающих конструкций:

Нормируемые значения сопротивлений теплопередаче для стен жилых и общественных зданий Rreq устанавливается в зависимости от градусо-суток отопительного периода (далее по тексту, — ГСОП) по следующей зависимости:

где a, b — коэффициенты, численные значения которых приведены в таблице 4 СНиП 23-02-2003:

Здания и помещения, коэффициенты a и b. Стен Покрытий и перекрытий над проездами Перекрытий чердачных, над неотапливаемыми подпольями и подвалами Окон и балконных дверей, витрин и витражей Фонарей с вертикальным остеклением
1 3 4 5 6 7
1 Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития
a

b

0,00035 0,0005 0,00045 0,000025
1,4 2,2 1,9 0,25
2 Общественные, кроме указанных выше, административные и бытовые, производственные и другие здания и помещения с влажным или мокрым режимом
a

b

0,0003 0,0004 0,00035 0,00005 0,000025
1,2 1,6 1,3 0,2 0,25
3 Производственные с сухим и нормальным режимами
a

b

0,0002 0,00025 0,0002 0,000025 0,000025
1 1,5 1 0,2 0,15
Примечания

Dd — градусо-сутки отопительного периода, °С·сут, для конкретного пункта;

Градусо-сутки отопительного периода Dd, °С·сут, определяют по формуле: где – расчетная средняя температура внутреннего воздуха здания, °С, принимаемая для расчета ограждающих конструкций:

  • для группы зданий по поз.1 таблицы 4 – по минимальным значениям оптимальной температуры соответствующих зданий по ГОСТ 30494 (в интервале 20-22 °С),
  • для группы зданий по поз.2 таблицы 4 – согласно классификации помещений и минимальных значений оптимальной температуры по ГОСТ 30494 (в интервале 16-21 °С)
  • для группы зданий по поз.3 таблицы 4 – по нормам проектирования соответствующих зданий;

, – средняя температура наружного воздуха, °С, и продолжительность, сут, отопительного периода, принимаемые по СНиП 23-01 для периода со средней суточной температурой наружного воздуха не более 10 °С — при проектировании лечебно-профилактических, детских учреждений и домов-интернатов для престарелых, и не более 8 °С — в остальных случаях.

Пример . Требуется определить нормируемое значение сопротивления теплопередаче R req 0 (при поэлементном подходе), R req min (при комплексном подходе) стен жилого здания, проектируемого в г. Краснодар.

расчетная средняя температура внутреннего воздуха в жилых помещениях здания t int =20 °С (по табл. 1 ГОСТ 30494);

средняя за отопительный период температура наружного воздуха для г. Краснодар t ht = 2°С (по табл. 1* СНиП 23-0l);

продолжительность отопит. периода z ht =149 сут (по табл. 1* СНиП23-01).

Определение нормируемого сопротивления теплопередаче стен: Градусо-сутки отопительного периода (ГСОП):

Dd = (t int — t ht )*z ht = (20 — (2)) • 149 = 2682 ( o C • сут).

Нормируемое сопротивление теплопередаче стен жилого здания: R req = a*D + b = 0,00035• 2682 +1,4 = 2,346 (м2 • o C/Вт).

Нормируемое минимально допустимое значение сопротивления теплопередаче стен жилого здания Rmq n : R min =0,63*R req =0,63*2,34=1,48(м2 • o C/Вт)

Методика расчета приведенного сопротивления теплопередаче наружных стен зданий из газобетонных блоков

Для производственных зданий с избытками явной теплоты более 23 Вт/м и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных) R req , м ·°С/Вт, следует принимать не менее значений, определяемых по формуле

В наружных стенах, где применяются газобетонные блок и, приведенное сопротивление теплопередаче R0[м2°С/Вт] определяется по формуле:

  • = 8.7 [Вт/м2°С] — коэффициент теплоотдачи внутренней поверхности наружной стены, определяемый по СНиП 23-02;
  • = 23 [Вт/м2°С] — коэффициент теплоотдачи наружной поверхности стены для зимних условий;
  • r — коэффициент теплотехнической однородности кладки стен из газобетонных блоков с учетом влияния швов кладки;
  • R k =R гб — термическое сопротивление однослойной стены из газобетонных блоков [м2 о С/Вт];
  • R k =R +∑R — то же для многослойной стены [м2 о С/Вт] (например, состоящей из последовательно расположенных газобетонных блоков, утеплителя и облицовки).

Термическое сопротивление однородного слоя определяется по формуле^

  • δ – толщина стены (слоя) [m]
  • λ — расчетный коэффициент теплопроводности материала, из которого выполнен рассматриваемый слой [Вт/м°С].

Расчетный коэффициент теплопроводности λ зависит от марки блоков по плотности (D), равновесной влажности стены и вида кладочного раствора. Численные значения коэффициентов теплопроводности λ для изделий из автоклавного газобетона ГСУЛ приведены в таблице 1.1.

Расчетные теплотехнические показатели ячеистых бетонов автоклавного твердения (по ГОСТ 31359):

№ п.п. Материал Характеристика
материала в сухом состоянии
Расчетные коэффициtнты (при условиях эксплуатации)
Плотность,ρ кг/м Удельная теплоемкость, с0, кДж/кг*0С Коэфф. теплопроводности , λ0, Вт/м*0С Массового отношения влаги в материале, ω
%
Теплопроводности, λ, Вт/м*0С Теплоусвоения s, ( при периоде 24 ч), Вт/м2*0С Паропроницаемости,µ, мг/м**ч*Па
А Б А Б А Б АБ
1 2 3 4 5 6 7 8 9 10 11 12
1 Ячеистый бетон автоклавного твердения 600 0,84 0,14 4 5 0,16 0,183 2,66 2,9 0,16
2 -//- 500 0,84 0,12 4 5 0,14 0,147 2,28 2,37 0,2
3 -//- 450 0,84 0,108 4 5 0,13 0,132 2,05 2,13 0,21
4 -//- 400 0,84 0,096 4 5 0,11 0,117 1,82 1,89 0,23
5 -//- 350 0,84 0,084 4 5 0,1 0,103 1,63 1,66 0,25
6 -//- 300 0,84 0,072 4 5 0,08 0,088 1,39 1,42 0,26

1) расчетные значения коэффициента теплоусвоения s (при периоде 24 ч) материала в конструкции вычислены по формуле:

2)Характеристики материалов в сухом состоянии приведены при массовом отношении влагив материале ω, %, равном 0.

Растворные швы кладки влияют на теплотехническую однородность стен из газобетонных блоков, а следовательно и на расчетные значения сопротивлений теплопередаче. Чем толще швы кладки и чем выше их коэффициент теплопроводности, тем более значительно это влияние. Рассмотрим влияние растворных швов кладки на параметры теплотехнической однородности стен из газобетонных блоков.

Для расчета примем регулярный повторяющийся фрагмент кладки стен из газобетонных блоков (рис.3.5). Толщина рассматриваемого фрагмента — 375 мм. Размеры блоков в кладке: длина — 625 мм, ширина — 375 мм, высота — 250 мм. Марка блоков по плотности – D500, коэффициент теплопроводности для условий эксплуатации Б, — λБ=0.132 Вт/ м °С (согласно данным табл. А.1 ГОСТ 31359). Для упрощения расчетов в представленном ниже примере и для клея и для раствора примем цементно-песчаный плотностью 1800 кг/м3 (коэффициент теплопроводности, — λБ=0.93 Вт/м°С).

Рассмотрим следующие варианты кладки стен:

на клею со средней толщиной горизонтальных и вертикальных швов кладки 2 мм (рис. 3.5а);

на растворе со средней толщиной горизонтальных и вертикальных швов кладки 10 мм (рис. 3.5 б).

Расчет термического сопротивления регулярного фрагмента стеновой конструкции произведем методом сложения проводимостей.

Кладка на клею (рис. 3.5а)

Выделим регулярный фрагмент кладки А и разделим его на участки с различной проводимостью плоскостями, параллельными тепловому потоку. Получаем два однородных и одинаковых по толщине участка со следующими параметрами:

Термическое сопротивление всего регулярного фрагмента определяем по формуле (10) СП 23-101: Rг=ΣАi/Σ(Аi/ Ri)=(0,625+0,007)/(0,625/2,84+0,007/0,4)=2,66(м2*оС/Вт),

Соответственно, коэффициент теплотехнической однородности определяем по формуле: r=R r /Rг.б.=2,66/2,98=0,89

Кладка на растворе (рис. 3.5б)

Произведем аналогичный расчет для регулярного фрагмента Б:

Термическое сопротивление всего регулярного фрагмента: R г =ΣАi/Σ(Аi/ Ri)=(0,625+0,036)/(0,625/2,84+0,036/0,4)=2,13(м2* о С/Вт),

Соответственно коэффициент теплотехнической однородности определяем по формуле: r=R r /Rг.б.=2,13/2,98=0,71

В таблице приведены расчетные значения коэффициентов теплотехнической однородности r для некоторых типов кладки стен из полнотелых стеновых неармированных изделий из ячеистого бетона автоклавного твердения с размером изделия в кладке 625*250 мм:

Как рассчитать теплопроводность стен дома

Как правило, теплосопротивление стен различается по регионам, и утепление помещений необходимо выполнять, учитывая климат. Ведь именно от хорошей теплоизоляции зависит температура внутри помещения и самих стен, а также то, как долго прослужит конструкция дома.

Каким теплотехническим требованиям должны соответствовать стены?

Все стены должны отвечать следующим теплотехническим требованиям:

  • Материалы, из которых изготовлены стены, должны иметь хорошие теплозащитные свойства.
  • Внутренняя часть стены должна иметь температуру, сходную с температурой воздуха в помещении, чтобы не образовывался конденсат. Допустимый предел температурных различий – от 4 до 12 градусов.
  • Стены должны быть максимально устойчивыми к влажности.

Также материалы не должны пропускать ветер и сквозняк.

Надо учитывать, что тип материала утепления напрямую зависит от того, из чего изготовлена конструкция помещения.

Следующий немаловажный фактор – это количество утеплителя, а также его толщина. Толщина рассчитывается исходя из свойств материала постройки.

Характеристика теплозащитных свойств

Теплозащитные свойства стен напрямую зависят от теплопроводности материалов, которыми они были утеплены. Уровень теплопроводности равен объему тепла, проходящему за один час через один квадратный метр защитного материала толщиной в метр.

Самая низкая теплопроводность – у минеральной ваты, угольной ваты, пенополиуретана и других подобных материалов.

Но выбор утеплителя обуславливается и материалом возведения стен. Например, для деревянных домов подойдет минеральная или угольная вата. Обусловлено это тем, что они оказывают большое сопротивление холоду, но при этом позволяют дышать конструкции.

Для утепления кирпичных стен вполне подойдут пенопласт, пеноплекс, пенополиуретан и другие похожие по характеристикам утеплители.

Как выполнить расчет теплопроводности стены

При выборе утеплителя для стен важно учитывать, в какой температурной зоне находится помещение, а также теплоизоляционные характеристики материала стен. Большая часть территории России, за исключением некоторых областей, находится в переменчивой климатической зоне.

Для подобных температурных режимов коэффициент сопротивления теплопередач должен быть равен трем или немного больше трех. Если стены построены из кирпича и толщина составляет не более 50 см, то коэффициент сопротивления теплопередачи стен будет составлять не более, чем 0,7.

Чтобы стены имели соответствующие нормам теплоизоляционные характеристики, потребуется утеплитель с коэффициентом сопротивления теплоотдачи не меньше 2,6. Этому показателю соответствует пенопласт толщиной до 10 см. Очень важно учитывать и теплопотери через стены.

Как рассчитать теплопотери через стены

В готовой системе теплопотери происходят на стыках между листами утеплителя, через отверстия для дюбелей, крепящих его к стене. Также теплопотери могут возникать, например, в краевых зонах, а также в местах, где теплоизолятор примыкает к кровле.

Они могут возникнуть на оконных и дверных откосах, так как в большинстве случаев там невозможно смонтировать утеплитель нужной толщины. В лучшем случае, туда можно вмонтировать пенополистирол, толщина которого составляет не более 5 см.

К тому же структура части стен дома характеризуется повышенной влажностью – это кухня, ванная комната и санузлы. Влага снижает теплоизоляционные характеристики большинства утеплителей как минимум на 20%.

Поэтому необходимо внести поправку в расчеты к проектной толщине утеплителя – на 100 мм добавить дополнительных 20 мм. Благодаря увеличению толщины утеплителя происходит компенсация вышеперечисленных потерь тепла.

Если толщина стен меньше 50 см, и они возведены из стандартных строительных материалов, то толщина утеплителя будет составлять не менее 12 см. Только при таких условиях утепление даст желаемый результат и стены будут соответствовать современным теплоизоляционным нормам.

Как посчитать теплопотери на калькуляторе онлайн

Для тех, у кого нет возможности или желания самостоятельно считать все параметры наружных и внутренних коэффициентов, существует калькулятор. Он способен рассчитать различные значения, необходимые для достижения нужного температурного эффекта для той или иной конструкции.

Кроме того, калькулятор может рассчитать коэффициент сопротивления конструкции. Рассмотрим каждый пример подробнее.

Для того чтобы рассчитать к.с. наружных или внутренних стен, введите в калькулятор следующие параметры: толщину наружных или внутренних утеплителей, толщину стены, на которую они установлены, а также среднюю норму температурного режима.

После того как все данные введены, можно нажимать кнопку «считать» и калькулятор выдаст достоверный результат. То же самое делается в примере, где необходимо считать значения для определения ширины наружных и внутренних утеплителей.

Для того чтобы правильно выбрать материал для поддержания нормальной температуры стен, тщательно высчитывайте значения коэффициента сопротивления. Сделать это можно как самостоятельно, так и при помощи калькулятора.

Кроме того, материал для утепления какой-либо строительной конструкции напрямую зависит от сырья, из которого изготовлена эта конструкция. Поэтому прежде чем начать считать коэффициенты, правильно подберите сочетающиеся между собой варианты.